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Boundary Integral Equations
in Dynamic Contact Problems for Plates

Igor Chudinovich and Christian Constanda
Kharkiv National University, Ukraine; University of Guanajuato, Mexico
University of Tulsa, USA
The existence of distributional solutions is investigated for the time-dependent
bending of thin elastic plates with transverse shear deformation in the dynamic contact
(transmission) problem. The dynamic analogues of the single and double layer
potentials are introduced and their properties are studied. Four representations for the
solutions to the contact problem in terms of these potentials are considered, These
representations lead o four systems of boundary integral equations with respect to the
unknown densities of the potentials. The existence of weak solutions (o these systems
is proved. Mathematics Subject Classification (2000). T4H20, 74K 20,35L55,45F15,

1. Formulation of the problem

Elastic plates form a very important class of mechanical structures, so their
rigorous mathematical analysis is an attractive and useful subject of study. Boundary
value problems for the equilibrium equations for plates with transverse shear
deformation (TSD) have already been solved by the authors by means of potential
methods in terms of classical or weak solutions (see [1]-[3].) The basic dynamic
problems are investigated in [4]. Below we restrict our attention to a dynamic contact
problem for an infinite plate with a finite inclusion.

Consider a homogencous and isotropic elastic plate of thickness 4, which occupies
aregion § x[~h,/2,h (2] , where S is a domain in R® with boundary S .In the
TSD model proposed in [1] it is assumed that the displacement vector at (x,x,),
xeR?, at time 720 is of the form (xq, (x,8), .0, (x,8),0,(x,1)) . Then
u = (t,,1,,u,) satisfies the equation of motion

B(&u)(x,1)+ Au(x,t) = g(x,1), (x,1)eG=8x(0,0); (1)

here B =diag{ph’, ph’,p}, h" =h; /12, p is the constant density of the material
and A is a 3-by-3 second order matrix differential operator whose elements are
expressed in terms of the Lame constants A, #of the material. Along with 4 we
consider the boundary moment-force differential operator T'. The explicit form of A
and 7" may be found in [1]-[4].

Suppose that @S is a simple closed C*-curve that divides R® into interior and
exterior domains S* and §°, We write G* =8* x(0,0), I'=05x (0,0} and
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assume that the regions S and S are occupied by plates with different Lame
constants, densities and thickness parameters. These parameters give rise to distingt
matrices B, and matrix differential operators 4, and T, corresponding to S* |
respectively,
The classical contact problem consists in finding u, e CH(GHNC(GH)
satisfying
B, (@u )x, ) +(Au)Xx0)=0, (v.0)eG"

B (8Tu Yx,0)+(Au Xx,0)=0, (x,0)eG",

u, (x,0+4) = (@ .u, )x,0+) =0, (x,0)eS",
u_(x,0+) = (0,u_)x,0+) =0, (x,nNes, (2)
u (x,t)=u (x,t)=fx1), (x,t)el.

(L) (60— (Tu) (x,0)=g(x,1), (x,0)eTl....
2. Funetion spaces

Let me R and peC, We denote by H,, ,(R’) the space that coincides with

H_( R’ ) as a set but is equ ipped with the norm

.., =4 fa+[of +le"y @  agy”,

RI

where # is the distributional Fourier transform of ueS'(R*). If ScR?, then
1]

Hwnp(8) is the subspace of all u e Hmm{f{j} such that suppu < S, and H m,(5)

i5 the space of the restrictions to § ofall ve H’ml_ﬁll’i2 ). The norm on H - (S) is

J

=4 inf

valf, (A Y=

s M.
i, oy L]

H_, (R?) is the dual of H i | R*) with respect to the duality gencrated by the

- “
inner product (-,), in L*(R*). The dual of &, ,(S) is oo A5
We denote by y the trace operator that maps H 1,p(5) continuously to the space

H,; ,(85), which coincides as a set with H,,,(85) but is equipped with the porm

||'!||I_-'2._.'.l;r?.'s' 2 inf ;H“”I..’I;S'

val (F k=
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We also consider H ,,, (85) , which is the dual of H,,, »(85) with respect to
the duality generated by the inner product ("), in £*(85).

For k>0 fixed, ~ we  introduce the complex  half-plane
Co={p=0+itreC:o>k}. Consider the space H: (S} .of all

m ke
i(x, p),xe S, peC,, such that U(p) =d(, p) .is a holomerphic mapping from
C, to H,(S) and for which

||ﬁii,t.x;s = Sﬂgf j(l i IP|2 }k IU(p)I|:4p:£df S

The norm on H;,, (S) is defined by this equality. The space Hf ;.. (85) and

its norm ]”] s1/2.kxps r€ introduced similarly.

Finally, let H,ﬁl,{G] and HZ,, 4+(I") be the spaces of the inverse Laplace
transforms u and [ ofall ie H,, (S) and fé H 5y (85), with norms

|'|u||m,k.x;ﬁ' ¥ |P‘Im.!.k;-¢’ Mt]."!.hr.r = f

Itl.-'z,t Al :

We denote by y* the trace operators corresponding to §* .

Making use of standard methods, we can easily obtain the variational formulation
of the contact problem (2). To save space, we omit its explicit mention, A solution

{u, ,u}e H]’I“;;J[G*]XH,LI‘;_I(G') of the variational contact problem is called a
weak solution of (2),

Theorem 1. For every x>0 , ge H, (R*xR,), feH,, (I and
g€ Hf,-,lzrl «(I7), problem (2) has a unique weak solution u={w_,u }, where
u, € Hiy (G*).If ge HS, (R*xR,) , feHE, (I) ,ad geHE, (),

I3k.x
keR then u, € Hf, | (G*) and

Fu" JII!J:—].J(;G" ‘I‘llu‘ ||l-..l’—l,n:,'£.-‘ :
s C{"qﬂvl..hh'qﬂiﬂ.ﬂ,_ +“fﬂl."2.t.rc;r 4 ||gI|—l.l'2,E,r;,l")'

3. Dynamic potentials and boundary Integral equations

We define the single-layer potential
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(Va)(x,t) = ”'D{x =Wi=t)a(y,r)ds dr, (x,t) € R* x(0,0),
0 as
where D(x,) is a matrix of fundamental solutions for (1) vanishing when ¢t < 0. It is
well known that (Fea)(x,f) has the same boundary properties as the analogous
potential in the static case. We denote by (Vye, )(x, 1) the single-layer potentials
constructed for the materials occupying the domains §* respectively. Representing
the (weak) solution {,,u_} of (2) in the form

u, () =(Fa,)(x0), (x1)eG
u_(x,0)y=V.a Xxt), (xNeG (3)

where %+ and %- are unknown densities defined on I and vanishing for < ﬂ,

we obtain the system of boundary integral equations
rvia,-yVa =f,
Ve -TVa =g. 4)
Theorem 2. For any x>0, and ke R, feHf,, (T), geHE,, (T),
system (4) has a unique solution a__H= ,, , (). In this case, {u,,u_} defined by

(3) belongs to HI"_'ll_l_ﬂ(G*} X Hlﬂl 1 {G7). I k21, then {u,,u_} is the solution of
problem (2).

We can easily introduce the dynamic analogue of the double-layer potential
(WB)(x,7) and represent the solution of (2) in terms of double-layer potentials.
Moreover, it is possible to represent the solution in §* in the form of a single-layer
potential and the solution in §~ in the form of a double-layer potential. All these
representations lead to specific systems of boundary integral equations whose unique

solvability has been proved. In all cases there hold statements analogous 1o those in
Theorem 2.
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