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R-functions method in problems of temperature fields calculation
for fuel rods

M. Ye. Voronianskaya
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In this paper the numerical solutions of model multiparametrical stationary
temperature fields calculation problems for fuel rods of complex cross section,
including having a translation type of symmetry, by method of R-functions are
considered. It is shown, that the method of R-functions is convenient for the solution
of such problems for fuel rods with any cross section, allows to receive necessary
accuracy of the solution and gives the user an opportunity of operative change of the
geometrical and physical information.

1. Introduction

One of the main problems of thermal reactor calculation is determination of
temperature fields in fuel elements. Rather high requirements are showed to fuel
elements concerning their reliability, which substantially depends on a correct choice
of its temperature mode. It is obvious, that calculation of temperature fields in fuel
elements is very important for a correct choice of their designs and allowable
capacities of heat generation.

The transfer of heat in fuels rods is mainly carried out by thermal conductivity,
therefore calculation of temperature fields for fuel rods is reduced to the solution of
thermal conductivity problems at presence of internal sources of heat. However only
few thermal conductivity problems in elements of a reactor’s structure allow the
analytical solution. Complex form of elements, non-homogeneous boundary
conditions, dependence of thermal conductivity capacity on coordinates and time (for
non-stationary problems), necessity for many cases to take into account dependence of
physical properties of a material on temperature - all this complicates or makes
impossible to use analytical calculation methods. For their solution the numerical
methods can be used.

Recently for the solution of boundary thermal conductivity problems in increasing
frequency the approximate analytical methods are applied, including direct methods,
for example, variational. However during long time the application of variational
methods was complicated because of impossibility of construction of coordinate
functions precisely satisfying to boundary conditions for areas of the complex form
and having property of completeness.

V. L. Rvachev with the help of the theory of R-functions has solved a problem of
construction of complete systems of coordinate functions for areas of the complex
form and various types of boundary conditions, that in turn has enabled essentially to
expand application of variational methods in practice. The constructive tool of a
method of R-functions allows to take into account the geometrical information at an
analytical level without any approximation and solves a problem of satisfaction to
boundary conditions of the most various types for areas practically of any form.
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The problem important today is the creation of computer models of physical
processes allowing, varying geometrical and physical parameters, to do multiversion
calculations.

2. Purpose

The purpose of this paper is the numerical solution of model multiparametrical
stationary temperature fields calculation problems for fuel rods by a method of R-
functions.

3. Solution of model problems
On stationary operating conditions temperature fields in them at constant thermal
conductivity A4 and packed thermal conductivity density g, are described by the

Poisson equation
Pu u u_ qy(xy.2)
't o A
which at absence of heat sources becomes the Laplace equation (here u—
temperature).

In nuclear reactors of various purpose fuel rods with cross sizes much less than
their lengths are applied. At calculation of temperature fields in such fuel elements in
many problems it is possible to neglect a thermal flow lengthways the fuel rod and to
consider a field of temperatures two-dimensional, satisfying in area €, which is a
cross section of fuel element, Poisson equation

o*u  o%u
Au=—2+—2=—f(x,y), (1)
ox° Oy

E

%,y) . Heat is taken off a fuel element’s surface by coolant having

where f(x,y)=

weight-average temperature u#, . The boundary conditions are conditions of the third
type of convection heat exchange between a surface and environment

/Ia—u+as(u—uL):0, 2
on

where o, — heat-transfer coefficient. It may change along fuel element border and be

equal to zero on some sites (for example, in points of a two fuel elements contact).
Let’s rewrite the boundary condition (2) as following

ou
P h(x, )| s =W (%)), 3)

o, a,
where h(x,y)= 7,1//(}5, V)= TML .
Then according to a method of R-functions, the solution of a problem (1) - (3) is
represented as structure
u=P —wDP +hPo+yo+o’P,, 4)
where @ = @(x, y) =0 —the normalized equation of border of area 0Q, P = (P,, P,)
— undefined component of solution structure — is represented as
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N N
B =Y Cx;, P,=Y Cyx: Here y; = y,(x,y) — complete system of coordinate
i=1 i=1
functions. The operator D, is used for continuation of boundary conditions inside of
area Q). Further, for finding undefined components we apply a Ritz method. For this
purpose we transit to a boundary problem with homogeneous boundary conditions and
on lineal of functions, satisfying them, we shall construct functional, equivalent to the
given boundary problem. The transition to homogeneous boundary conditions is
carried out by replacement u =u, +u,, where u, satisfies boundary conditions (3).
Then the equivalent variational problem is to minimize of the following functional:
@)= [[[(V1,)? +2(Vu, Vitg) =2 fi, 12 + [ (st =2 = huag Ju, )
o 50 )
As we are interested in minimum of this function, the coefficients C,,C,,....,C,,
must satisfy to system of the equations:
oJ  TAN
c ”[Vu“Vulj = fu; +Vu,Vu,, JdQ2 + I(hu”ulj =y = huy)u,;)dQ, j=12N.
JooQ e}
From this linear system, which is called Ritz system, coefficientsC,,C,,....,C,, are

determined, and, accordingly, the approximate solution u .
Example 1.

A fuel element with cross section as correct hexagon is considered.
¥

Fig.1.Cross section of a fuel element.

Heat generation is considered constant on area, and both heat emission coefficient
and temperature of a liquid — are constant along border, i.e. in a problem (1) - (3):

f:quconst,hz%zconst,y/:%n =hT, =const .

The normalized equation of area border 0Q2 (@ = 0) was constructed in the form:
@,

= >
1+ o,

@, (x,y) = oy (pcos u,(0,m),y), p = x> +y*,0 = arctg% ;

(- Sin[(2i -mé
2

b

1 Om)=——%

,0,=(r—x)=0.
mz 5 (2i-1)° } 0 =00
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In a fig. 2 the distribution of temperature in section y =0 is given at various

values of /, which actually defines the character of conformity between temperature
conditions in an environment and distribution of temperature in a body.
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Fig.2. Distribution of temperature depending on parameter h.

As we see, at increase of parameter /2, temperature in fuel element is reduced.

Example 2.

At constructing of fuel elements they not only choose materials with good
thermophysical and nuclear properties, but also aspire to ensure good heat transfer
between fuel element and coolant. The improvement of heat transfer, for example, is
reached at the expense of increasing the relation of a surface to volume of fuel
element. Let's consider the solution of a problem (1) - (3) with the same conditions, as
well as in the previous problem, in cylindrical (section - circle) and tubular (section -
ring) fuel elements, which are the most widespread forms. The equations of borders of
areas in this case were constructed as follows:

o= (r* —x* —y?)/2r=0 - the normalized equation of border of area of cylindrical
fuel element section;

o=(r*=x* =y 2r)A((r/2)* =x* =y*)/2(r/2)))=0 - the normalized
equation of border of area of tubular fuel element section.

In a fig. 3 the comparison of distribution of temperature in fuel elements is
represented

In fuel element, which section represents a ring, at the expense of the large relation
of a surface to volume, heat transfer is better and in whole temperature inside fuel
lower.
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Fig.3. a) picture of level lines of a temperatures field in cylindrical fuel element;
b) picture of level lines of a temperatures field in tubular fuel element,
¢) the plots of the solutions in section y =0 for cylindrical (1) and tubular (2) fuel elements.
Example 3.
The cross section of fuel element represents correct hexagon with 91 symmetrically
located circular apertures.
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Fig.4. Cross section of fuel element with cylindrical channels.

The intensity of heat generation is considered constant on section. All formed heat
is removed by a liquid proceeding in apertures, i.e. on circles the heat exchange is

given. On the sides of hexagon thermal flows are equal 0 (g_u =0).Temperature of a
n

liquid in all apertures assume identical, therefore in a boundary condition (3) we
accept u, =0, i.e. we count temperature in fuel element from temperature of a liquid.

a
W, —
Then in a boundary condition (3) =0, and h=— 2 s received under
W, + o,

conglutination formula
The normalized equation of area border 0€2 (@ = 0), the normalized equation of a
site of border 0, (@, =0), on which the thermal flow is given, the normalized

equation of a site of border 0€2, (@, =0), on which the heat exchange is given, were
constructed using following formulas:
0=0, \0,,

@ (x,¥) =0, (pcos ,(0,m), y), p=+/x"+y*,0= arctg%,
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o, =[(r—x)20],

8 & (= [@i-)me
e Om = i) sm[ > }

@, (x,y) =0 (4, (X, hx), w1, (¥, hy)) v o, (1, (x, hx), w1, (v, hy))
_4h & (=D [(21‘—1)”}
u, (x,h) = = ,»g‘(zi—l)z sin p ,
o, =[(R* —x*x—y*y)/2R )20,

o, =[(R* —(x—hx/2)*(x—hx/2)—(y—hy/2)*(y — hy/2))/(2R) > 0] .

It is necessary to note, that the construction of an area border function with the help
of translation has allowed to apply R - operations only 2 times, instead of 94 times by
quantity of channels (91), i.e. to automate process of construction compound area
border functions.

It would be desirable to note, that the problem was solved in two ways - two types
of structures were used: 1) structure with natural boundary conditions u =P ; 2)

structure (4), structure precisely satisfying all boundary conditions. In the first case the
necessary accuracy of the solution was achieved by increase of dimension of a splines
grid, in the second case - at the expense of exact satisfaction to boundary conditions.
In the first case linear splines were used, and in second cubic splines B;. The results
received by both ways, coincide, that also can be one of confirmations of their
reliability.

In a fig.5 the picture of level lines of a temperature field is represented.
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Fig.5. Distribution of temperature in fuel element.

The results of calculations have shown, that at considered homogeneous on fuel
element section distribution of apertures there is an essential change of temperature on
directions from the centre of fuel element to its sides.

It is possible to allocate two categories of channels in fuel element which are not in
equivalent conditions from the point of view of cooling by the coolant: channels of the
central and peripheral zone. The channels of the central zone are surrounded with
identical cells, and the peripheral channels located at flat sides, are non-uniformly
cooled on perimeter because of various configuration of cells around them. In result
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temperature essentially varies on perimeter of peripheral elements. Also heat is
removed more through peripheral channels than through central.

The computer modeling was spent under operating conditions of POLYE system,
which was developed in A.N. Podgorny Institute for problems in machine building
under the direction of the academician of Ukrainian NAS V. L. Rvachev. This system
allows to solve boundary problems with various types of boundary conditions for
areas of any form, in short term to provide a plenty of numerical experiments and
operatively to solve problems of calculation of fields of a various physical nature.

5. Resume

The numerical solutions of model multiparametrical problems of calculation of
stationary temperature fields for fuel rods of complex section are considered, that has
allowed to choose the appropriate techniques for the subsequent solution of real
problems.

Is shown, that the method of R-functions is convenient for the solution of
problems of calculation of fields of temperature in fuel rods with any cross section,
allows to receive necessary accuracy of the solution and gives the user an opportunity
of operative change of the geometrical and physical information. It enables to
experiment with the mathematical model, to vary parameters and to play with the help
of model the most various situations.
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