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About One Model of Consecutive Qubit Binary Testing

G. M. Zholtkevych, M. Thawi
V. N. Karazin Kharkiv National University, Ukraine

Qubit binary tests models are considered in the paper. For each binary test the state of
compound quantum-classical system is associated. Formulas for density matrices
transformation under binary test are obtained. Method for computing probabilistic cha-
racteristics of testing outcomes is proposed. Class of probabilistic measures on testing
outcome sequences space is described.
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B crati po3risiHyTI Moeni GiHapHUX TecTiB i KyOiTy. [Tokaszane, 1m0 3 KOXHUAM Te-
CTOM IIOB’sI3aHUH MEBHUHN CTaH CKJIAJIEHOI KBAHTOBO-KJIAaCH4HOI cucteMu. HaBeneHnuit
BUJI TIEPETBOPEHHS MATPHLb LIIJILHOCTI CTaHIB Ky0iTy B HACI/IZOK TECTYBaHHs. 3ampo-
MOHOBAaHUI METOI 00UUCIICHHS HMOBIPHICHIX XapaKTePUCTUK Pe3yJbTaTiB TECTyBaH-
Hi. OnmcaHo KJIac iIMOBIPHICHUX Mip Ha MPOCTOPI MOCHiZOBHOCTEH OiHApHHUX HACTia-
KiB, III0 BUHUKAIOTh B IIPOIIECi TECTYBAHHS.

Kntouosi cnosa: kybim, Keanmose UMIpIOBAHHS, NPOeKYiliHe BUMIPIOBAHHS, NOCIIO0BHE K8AHMO-

8e BUMIPIOBAHHSL.

B crarbe paccMOTpeHBI MOJIEIH ABOMYHBIX TECTOB Ul KyOura. [Toka3aHo, 4To ¢ Kax-
JBIM TECTOM CBSI3aHO OINpPEJETIEHHOE COCTOSHUE COCTAaBHOW KBAaHTOBO-KIIACCHYECKOM
cuctemsl. [lomyden Bux npeobpa3oBaHmii MaTPHILl INIOTHOCTH COCTOSHUN KyOuTa B pe-
3yIbTaTe TeCTUPOBaHMs. IIpesioxkeH METo | BBIYMCIECHHS BEPOSTHOCTHBIX XapaKTepH-
CTHK Pe3yJbTaToB TeCTHpoBaHHA. OIICaH KIacC BEPOSTHOCTHBIX MEp Ha MPOCTPAHCT-
BE IIOCIIEA0BATETBHOCTEI JBOMYHBIX HCXOH0B, KOTOPHIE BOHUKAIOT B PE3yIbTaTe TeC-
TUPOBAHUSL.

Knioueswvie cnosa: Ky6um, KeaHmoeoe usmepenue, npoeKyuonHoe usmepenue, nociedosamenvHoe
Keanmoeoe usmepeHue.

Introduction

Nowadays, quantum computing is being considered as a prospective research area
for solving computing complexity problem [1, 2]. There are great expectations that a
capability of quantum computing systems is streets ahead of a capability of classical
computing systems. Research results [3 — 5] corroborate these expectations.

The cardinal problem in this research area is modeling problem for quantum infor-
mation processes. As known, an assertion and an operator are key concepts of a ma-
thematical model of classical computing processes [6]. In the case of quantum compu-
ting process, assertions are changed by measuring procedures and operators are
changed by dynamical transformations [7]. In this paper we consider models of quan-
tum measuring procedures for some class — measurement with two outcomes. We call
such measuring procedures by quantum binary tests. The paper objective is to study
such measuring procedure for 2-level quantum systems (qubits).

Note that we do not restrict our studying by standard (projective) quantum measur-
ing procedures. It ensures a possibility of taking into account a new class of informa-
tion signal detectors based on Josephson solid-state qubits [8]. Research frame exten-
sion requires considering consecutive quantum measuring procedures.

Our objectives are
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1) to develop models of a qubit binary test and a process of a consecutive measure-
ment of a qubit using such tests;
2) to study developing models.

1. Models of qubit states
Let H, be a 2-dimensional Hilbert space of a qubit.

It is well-known [9, 10] that a non-negative operator p in H, is a model of a qu-
bit state if it holds condition Tr( p)=1. In this case p is called a density matrix.

Density matrix p corresponds to a pure state if it is a one-dimensional ortho-
projector, i.e. p =|&)(&| for some unit vector & in H. In other case density matrix

p corresponds to a mixed state.

2. Models of qubit binary tests
We shall use the following definition for qubit binary test [10]: let M = { M, M| }

be a pair of non-negative operators in H,, it is called a qubit binary test if the opera-
tors satisfy condition My +M; =1.

Hence, we can characterize qubit binary test T by an operator M in H,, where
0 <M <1. Operators My and M| can be restored by formulas My =1-M and
My =M.

Test T defines an affine map from a set of all states to a set of all probability dis-
tributions on a set £ = {0,1}:

Py (0)=Tr(p-(1-M))

(2.1)
Pry (1)=Tr(p-M)

3. Naimark’s theorem for qubit binary tests

In this and next sections we shall obtain an explicit relation between qubit binary
tests and projective (von Neumann’s) measurements with two outcomes [9]. Existence
of this relation follows from Naimark’s theorem [11], but we need explicit representa-
tions of all elements of Naimark’s construction.

Statement 3.1. If T is a qubit binary test, M is an operator in H, such that condi-

tion 0 < M <1 is held then there exist ortho-projectors £y and E| in Hy) ® H, and
an isometry V' : Hy — H, ® H, such that the following conditions hold:

Eo+E =1L Ey-E1=0 3.1

1-M =VE)Y, M =V*EV (3.2)

Proof. Let {|0),|1)} be an ortho-normal basis in H; and |0),|1) are eigenvectors

of the operator M corresponding to eigenvalues mq < m; respectively. In this case

the operator M is represented by the following formula:
M = mo |0y (0] + my 1)1 (33)



BicHuk XapkiBcbkoro HauioHanbHoro yHiBepeuteTy Ne890, 2010 73

Consider an operator V' : H, - H, ® H, such that
V|0) = \[T=mq|00) +[mq|01)
VY= T=m[10)+ [m|11)

Let aq(x) be equal to ~/1—x and a;(x) be equal to vx.

Then we can rewrite for s € {0,1}

Visy= > ay(myg)|ss") (3.4)

s'€{0,1}

Note, that for £ € H,
V&=V (10)(0]&) +1){1|£)) = (0]&){/1=mq |00) +(0]£)[mo]01) +
AT ]10) + {11&) Jmrr 1)

[VEIP = (1=mo )(OIE) +mol(O[E) +(1—my )[(UE) +my|(1|&)
=0|&)[ +[ Q&) =)

Therefore V' is an isometry.
We obviously have for each s € {0,1}

(s[5 = (5T Ish = 3 ag (my )(s's"]sst)) =

and

s3efo,1}
= 2 as(3)(ms )<SS(3)‘S,S”> =ag (myg )(s|s") =ag (my )(s|s’)
s(ef0,1}
Therefore,
V7|s's") = ag (my )|s") (3.5)

Using (3.5), we get

7o) = JT=mglo)  ¥*[10)= JT=m])

* i (3.6)
Vo1 = /mg|0) V1) = Jmy|1)
Denote by E( and E the following ortho-projectors
Eo =]00)(00|+[10)(10
0 =100)(00]+[10)10 .

Ey =[01)(01]+ [11)(11]
Using (3.5) and (3.6), we get
V*EoV|s) =V (|00)(00]+[10)(10])V|s) =
=17 (]00)(00] + [10){10[) > ay (mq)|ss’) =

s'e{0,1}

=" 3 e )(00)(00s5) + 10){10]ss)) -

s'

= 1" (ao(m,)|00)(0]s)+ ag (m )|10){1]s)) =
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— ag(my )(JT=mg|0)(0]s) + JT=my [1){1]s)) =

=a(mg )ao(m0)|0)<0|s>+a0(ms )ao(m1 )|1>(1|s)

Hence,
VEGV = > VIEV|s)(s| =
se{0,1}
= %1}(a0(ms)ao(mo)|O>(0|s>(s|+a0(ms)ao(m1)|l>(l|s)(s|)

=aq(mo)ag(mo )|0)0]+ag(m )ag(my)[1){1]=

= (1=m0 )|0)(0]+ (1= my )[1){1| =1 = (m|0){0] +my|1)(1]) =1- M

Therefore,
VEoV =1-M
Similarly,
VE\W =M
This completes the proof of Statement 3.1. QED.

4. Qubit binary tests and projective measurements of combined system

In this section we shall establish that a qubit binary test can be considered as a se-
quence of three steps: the first, combining qubit with a classical system (an instru-
ment); the second, measuring the combined system by some projective measurement
with two outcomes; and the third, removing the instrument from the combined system.

Statement 4.1. Let T ={1-M,M } be a qubit binary test, p be a qubit state den-

sity matrix, V' be an isometry related with T according to statement 2.1 then ¥ pV™

is a density matrix.
Proof. Evidently, that ' pV* is a non-negative operatorin H, ® H,.

By direct calculation we can obtain:

v pv* =1/(10)(0] p|0){0] +|0){0] p[1) (1] +1)(1] p|0){0] + [1)(1] pl 1)1 )" =

)
= V10){0] p[0){0[¥" + ¥ [0)(O] p[ 1) (A + ¥ [1)(1] p[0)(O[7* + ¥ )1 p (1™ =

= (JT=m0]00) + \[mg|01) (0] p|0)( JT= g (00| + \fmrg (01]) +

+(JT=m0100)+ |farg |01) 0] Al (JT=ry (10] = o {11]) +

(T [10)+ 1)) (1] p|0)(JT= 10 {00] + Jmg (01]) +
+(JT=r7110)+ Jomy [11) )1 |1y (T= 7 (10]+ oy (1))

Transposing members of this equality we get
V V™ = (0] p|0)((1-mq)[00)(00] +/mq(1-mg)[00)(01] +
+yfmo (1= )[01)(00]+ mg|01)(01] ) +
+<O|p|1>(\/(l—m0 )(1=m1)[00)(10] + \Jmy (1= mg )[00)(11] +

4.1)
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+fmo (1=m1)[01){10]+ Jmomy[01)(11]) +
+{1] p|0)(J(1=mo )(T=m1 ) [10)(00] + fmq (1= my ) 10) (01] +
3fmy (1= mg )[11)(00] + fmomy [1)(01]) +
{1 pI)((1=m1 )10)(10]+ fmy (1=my ) |10)(00] +
3 fmy (T=m )| 11)(10] + my [11)(1])

Now it is easily seen that

Tr(Vpr*)=1
Hence, V pV'* is a density matrix. QED.

Remark 4.1. We shall consider ¥V pV* as a density matrix of a combined system

state.
Statement 4.2. Let T ={1-M,M } be a qubit binary test, p be a qubit state den-

sity matrix, V', E, E be an isometry and ortho-projectors related with T according
to statement 2.1 then the probability distribution of outcomes of projective measure-

ment {E 0-E1 } for the combined system state ¥ pV'™ is

Prif0 R (0) = Tr(p(1-M))
(4.2)

{E°’E” (1)=Tr(pM)

Proof. As known for projective measurement [9]
;EO PR 0)=Te(Vpr*Eo ) = Te( pV*Egl )

Using (3.2) we get

ol (0)=Tr(p(1-M))

This completes the proof of Statement 4.2. QED.
For an operator A® B in Hy ® Hy by Trjps (A ® B) denote an operator in Hj:
T [A®B]=Tr(B)A4
The map Tr,g corresponds to removing the second part of the combined system.
Statement 4.3. Let T ={1-M,M } be a qubit binary test, p be a qubit state den-
sity matrix, V', Eq, £ be an isometry and ortho-projectors related with T according

P

to statement 2.1 then
| _EovpriEg C(1-M )2 p(1-M)
Pl Te(vertEy) Tr(p(1-M))

(4.3)

and
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EVpV*E, MY oMb
ins{ = L (4'4)

Te(Vpr*Ey) | Tr(pM)
Proof. Applying to these states the removing map Tr,s and using (4.1) and (4.2)
we get

o) | T e e oleIo0 e

w(1=mg )(1=m1){0] p[1)]00)(10]+ /(1 =mg )(1-my ) (1] p|0)[10){00] ) +

VAV A a4
(1= Yl aiyioyof] - =M -4

EoVpV*E, 1
ns

Similarly,

EVPV'Ey | MVpm)
I; =
Pl Te(vprE) | Tr(pM)

This completes the proof of Statement 4.3. QED.
Remark 4.2. By the von Neumann’s postulate [10] if we make projective measure-

ment {E 0-E1 } of a quantum system and before measurement its state is described by
density matrix ¥ pV* then after the measurement the system state equals to

EgVpV'Ey . :
————— If measuring outcome has been equal to '0' and equals to
Tr(V pV*Eq )

EWVpV'Ey | .
————— if measuring outcome has been equal to 'l". Statement 4.3 grounds that
Tr(V pV*Ey )

(1-M)2p(1-m)"  m)2pu’:
Tr(p(1-M)) Tr(pM) -

Denote posterior states of a qubit after binary testing by

_(1-M)% p(1-m)"

a qubit state after binary testing equals to

ol =Gt )
Tl[p]=% (4.6)

Statement 4.4. Let T = {1—-M,M } be a qubit binary test, p be a qubit state den-
sity matrix, V', E, E be an isometry and ortho-projectors related with T according
to statement 3.1 then

Trins| EoV pV*Eq + EVpV*Ey | =Pry (0)-To[ p]+Pr (1) Ty[p] (4.7)

The proof is trivial.



BicHuk XapkiBcbkoro HauioHanbHoro yHiBepeuteTy Ne890, 2010 77

Remark 4.3. Trj,g [E VPV Eg+EV pV*E; J can be interpreted as a predictable
state after testing. We shall denote it by Ty [ 2] Using statement 4.3 and statement

4.4 we get
T [p]=(1-M)2 p(1-M )2 + M 2pM ) (4.8)
Using (4.7) we can rewrite (4.8)
Ty [p]=Pr] (0)-To[p]+Pr] (1)-Ty[ p] (4.9)

5. Conservation of qubit state purity in binary testing

In this section we shall show that a pure qubit state is transforming to a pure qubit
state by binary testing.

Statement 5.1. A qubit state density matrix p is a pure state density matrix iff

p = q|0){0]+ "\ pq|0){1| + &=\ pq 1)(0] + p|1)(1] (5.1)
for some p,q >0 suchthat p+¢ =1 is held.
Proof. Let & € H, be a unit vector then & = rge’ |0) + e |1} where rg,r >0
and rg + r12 =1.
Consider the density matrix pz =|&)(&|.
pe =1 E)E] = r0e™ 10 + e 1)) roe ™ (0] + e 1] ) =
= 1210)(0] + YOV g [0y (1] + & YOV g 1) (0] + 2 1)1
Denote ¢ =r§, p =r12, v =y —; then

pe = ql0){0]+ ¥/ pg|0){1] + ™ pg[1)(0] + p|1)(1]

where p,g>0 and p+qg=1.

Conversely, let o be density matrix (5.1). Denote by & a unit vector
eV Jq|0)++/p|1) then p = pe - QED.

Statement 5.2. Let T ={1-M,M } be a qubit binary test, p be a pure qubit state
density matrix then T([ p] and T;[ p] are pure qubit state density matrices.

Proof. Suppose {|0),]1)} is the eigenbasis corresponding with M ; and
0<mgp<my <1 are corresponding eigenvalues; and

p = q|0){0]+ ¥ pg|0)(1]+ ™\ pa[1)(0] + p1)(1|

then using (4.6) we get

gm eV \[pamom,
T =— 00| + ———|0){1| + 5.2
1ol qm0+pm1| ){O] p—— 10)(1] (5.2)

eV [ pgmom pmy
+———————[1){0] + —————|1)(]

gmq + pm qmq + pm
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' qmo ' pmy
Denote by ¢’ the value —————— and by p’ the value —————— then we ob-
gmqo + pm| gmo + pm|

tain from (5.2)
Ti[p]=¢'|0){0[+ e\ p'q'|0)(1[+ e\ p'q"[1){0] + p'[1)(1]
It is evident that p’,¢" > 0 and

., pmy qmy
p+q = + =1
qmqo + pmy  gmqy+ pmj

By Statement 5.1 T|[ p] is a pure qubit density matrix. Similarly, one can prove

that T [ p] is a pure qubit density matrix too. QED.

6. Consecutive qubit binary testing

In this section we shall consider probability distributions on the space of outcome
sequences corresponding to consecutive qubit binary testing.

Remind that X ={0,1}.

Let =% be a space of all outcome sequences with Tychonoff topology and gener-
ated by it Borelean structure.

Let p =q|0)(0]+ e pq|0)(1|+e ™ pq|1){0|+ p|1){l] be a pure qubit state
density matrix, T ={1—-M,M } be a qubit binary test. We shall describe a probability
measure on ¢ generated by an infinite sequence of qubit measuring by test T .

Consider an alphabet X ={0,1,*}. Let w=s]...s, be a word under X and let the
following condition be satisfied: s,, # '*', then we shall say that the set

Zw ={062”|(Vi|1£i3n/\sl~ #'*")(o; =sl-)}
is a cylindrical set.
As known [12, 13], the family of cylindrical sets generates Borelean structure on

>? and each Borelean measure is uniquely defined by its values on such sets.
Statement 6.1. Let p be a pure qubit state density matrix, T ={My,M;} be a

qubit binary test, w = s...5, be a word under alphabet ¥ then

Prg(zw)zTr(pM;?...M% M M M;IA) 6.1

Sn—1 no Sy

Proof. By Ty, 4, [ o] denote a qubit density matrix after k time measuring by bi-
nary test of a qubit with initial state described by a density matrix p if outcomes se-
quence is §7...5, . We claim that

sl t¥ont b e

s i

Tsl...sk [,0] =

Sk s

1 1 1 1
Tr(pMS?...MSf_lMSkMA MA) (6.2)

T 1 1 1 1
Pr, (sl...sk)=Tr(pMS?...MSf_IMSkMSf_I...MS?)

by induction.
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In the case k£ =1 using (2.1), (4.5) and (4.6) we get

Pry (0)=Tr(p(1-M)) Pty (1)=Tr(pM)
_(1-M)" p(1-M)" _Mpu
Tolel="— =) Tlel==om

Further, if statement is true for all » < £ we obtain
T T T
Pl‘p (Sl---SkSk+l ) = Pl‘p (Sk+1 | S1..-8k )Prp (Sl---Sk ) =

_ P P P AN
—Tr(Tslmsk[p]MskH)Tr(pMslz...Mskz_lMskM DM =

Sk-1
1 1 1 1 1 1 1 1
- Tr(MA...MApMA...MAMS ) - Tr(pMA...MAMS M2 M )
Sk S1 S1 Sk k+1 S1 Sk k+1 Sk N
and

1
ME T, [p]M

T =T T — Sk+1 Sk+1 —
ST+ SkSk+1 [p] Sk+1 I: 818k [p]:l Tr(Tsl.nsk [,D]Msk+1 )

oM o) o oo
Sk Sp 51 e TP

Sk-1 Sk+1 Sk Sk+1

M)

)
Tr(pMslz...M

= 1 ] ] 1 ] ]
Tr(pMA...MA My MA MA) Tr(pMé...MAMS
S1 Sk—1 k™ Sp—1 S1 S1 Sk k+1
W o ot

Sk+1 Sk Sk+1

- 1 1
Tr(pMA...MAM
S1 Sk

M)

Sk+1

This completes the proof of Statement 6.1. QED.
Using Statement 6.1 we compute a probability distribution corresponding with
qubit binary testing.

. . Y a5
In this case all operators in the product Msl2 ...MSkZM M 2...MS12 commute,

Sk+1 Sk

Sk+1

1 1 1 1
therefore MS?MSfM MSfMS? =M§+1_NM1N where N is a number of 'l'

in the sequence sy...5;S;4] -
Hence,
Prj (Zy) = Tr(p(1- 00 ) *I7NO) pg VO )

where N(w) is a number of 'l" in the outcomes sequence w and |w/| is total number

of symbols in w.
Thus we have

—Ni N -N N
PY (Z,,) = g(1=mg )TN VO (1 N VO3
It is evident, that the probability distribution corresponding to a consecutive binary

testing of a qubit in a pure state is a binomial distribution mixture.

Summary
The mathematical model of a qubit binary test is described and studied in the pa-
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per. The model grounds on the idea that each qubit binary testing is a sequence of
three steps: the first, combining qubit with a classical instrument; the second, measur-
ing the combined system by projective measurement with two outcomes; and the third,
removing the instrument from the combined system.

Using the model made possible to obtain
1) representation of a qubit state after measurement if an initial state and the test out-
come is known (formulas (4.5) and (4.6));
2) representation of a predictable qubit state after measurement if an initial state is
known (formula (4.9));
3) proving of the statement about conservation of qubit state purity in binary testing
(Statement 5.2);
4) formulas for a probability of outcomes sequence and formula for a posterior qubit
state density matrix in a consecutive binary testing if corresponding outcomes se-
quence is known (formulas (6.2));
5) formula of a probability distribution for consecutive binary testing of a qubit in a
pure state (formula (6.3)).

Our further research will deal with studying of stochastic properties of qubit binary
testing and generalizing results of the paper for the case of consecutive qubit measur-
ing with three outcomes.
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