УДК 681.3.06 + 516.6 + 539.2

Событийное моделирование процесса адсорбции водорода на поверхности углеродных наноструктур

М. А. Слепичева, Ю. К. Чернышев

Национальный аэрокосмический университет им. Н.Е.Жуковского «ХАИ», Украина

Предлагается расчетный метод моделирования совместного поведения большого количества модельных частиц. Особенностями метода являются строгое соблюдение законов сохранения в парных взаимодействиях и высокая производительность. Приведены результаты вычислений с помощью стандартных методов и предложенного в применении к моделированию адсорбции молекул водорода фуллереном C₆₀. Установлены особенности модельных потенциалов при наличии перестройки электронной оболочки атомов углерода. Дано краткое описание пакета программ, реализующего моделирование процесса адсорбции.

Ключевые слова: событийное моделирование, прямоугольный потенциал, адсорбция водорода.

Пропонується розрахунковий метод моделювання спільної поведінки великої кількості модельних частинок. Особливостями методу є суворе дотримання законів збереження в парних взаємодіях і висока продуктивність. Наведені результати обчислень за допомогою стандартних методів і запропонованого в застосуванні до моделювання адсорбції молекул водню фулеренів C₆₀. Встановлено особливості модельних потенціалів при наявності перебудови електронної оболонки атомів вуглецю.

Ключові слова: подійне моделювання, прямокутний потенціал, адсорбція водню.

Calculation method of modeling the joint behavior of a large number of model particles is proposed. Features of the method are strict adherence to conservation laws in two-body interactions and high performance. The results of calculations using standard methods and proposed in the application to modeling of adsorption of hydrogen molecules fullerene C_{60} are considered. Specific features of model potentials in the presence of the restructuring of the electron shell of carbon atoms are obtained.

Key words: event-driven simulation, rectangular potential, hydrogen adsorption.

1. Введение

Для реальных экспериментов на наноструктурных объектах требуется сложная, высокоточная и дорогостоящая аппаратура. В этих условиях особую роль приобретает компьютерное моделирование. Актуальной является задача построения эффективных аккумулирующих водород устройств и моделей для численного исследования процессов адсорбции молекул водорода при различных термодинамических условиях. Перспективными объектами для хранения водорода могут быть нанотрубки и фуллерены.

Центральное место среди фуллеренов занимает молекула C_{60} , которая характеризуется наиболее высокой симметрией и, как следствие, наибольшей стабильностью. Молекула фуллерена C_{60} имеет структуру правильного усечённого икосаэдра [1]. Атомы углерода располагаются на сферической поверхности в вершинах 20 правильных шестиугольников и 12 правильных пятиугольников, так что каждый атом углерода в молекуле C_{60} находится в вершинах двух шестиугольников и одного пятиугольника. В структуре C_{60}

имеется два типа связей, одна из которых (двойная) является общей стороной двух шестиугольников, а другая (одинарная) является общей стороной пятиугольника и шестиугольника.

2. Проблема аккумуляции водорода

Для рентабельности процесса накопления требуется достижения емкости аккумуляторов по водороду не менее 6 масс.% [2]. При этом важно также обеспечить как термодинамическую устойчивость соединений с высокой концентрацией водорода, так и обратимость процессов сорбции и десорбции водорода. Попытки создания водородных хранилищ на основе углеродных нанотубуленов реализованы во многих экспериментальных работах. Опытные данные о количестве водорода, аккумулируемого углеродными нанотрубками, полученные разными авторами, имеют существенные отличия между собой.

В большинстве работ указывается на невозможность преодоления емкости по водороду углеродными нанотрубками более 6,5 масс.%. Так, например, в работе [3] количество адсорбированного водорода не превысило 0,92 масс.% при температуре 77К и давлении 10 МПа. Согласно [4], водородная емкость углеродными нанотрубками составляет 1,84 масс.% при температуре 298К и нормальном давлении. Под более высоким давлением удается достигнуть 7,7 масс.%, что соответствует присоединению одной молекулы водорода к каждому атому углерода. В работе [5] было показано, что количество адсорбированного водорода, превышающее 7масс.%, реализуется при повышенных температурах и давлении 9ГПа.

Вместе с тем известны работы, в которых утверждается, что преодоление предела водородной емкости УНТ в 10масс.% возможно. По данным [6], плотность адсорбированного водорода составляет от 7 до 13 масс.% при комнатной температуре и давлении в 10 МПа.

3. Математические модели процесса

Ввиду важности и сложности проблемы активно разрабатываются различные методы численного моделирования адсорбции водорода [7, 8]. Наиболее часто применяется метод молекулярной динамики (МД), причем атомы трактуются не квантово, а классически, как подчиняющиеся ньютоновским уравнениям движения. Как правило, рассматриваются непрерывные потенциалы парного взаимодействия, зависящие лишь от расстояний между центрами модельных частиц. Это приводит к необходимости использования приближенных методов интегрирования уравнений движения [9]. К настоящему времени предложено большое количество алгоритмов и пакетов прикладных программ для решения задачи моделирования совместного поведения коллективов модельных частиц. Основными недостатками при этом являются следующие: неприменимость для достаточно большого количества модельных частиц и принципиальная невозможность строго соблюсти законы сохранения ввиду накопления ошибок вычислений. Предлагаемый в данной работе событийный подход позволяет повысить эффективность процесса расчета с соблюдением законов сохранения.

Нулевые колебания атомов, квантование уровней энергии и эффект туннелирования в методах МД не учитываются, поэтому любые МД-расчёты не

могут правильно предсказать качественные (и тем более количественные) результаты для движения частицы при низкой температуре [7]. Однако в работе [10] показано, что квантовые эффекты в рассматриваемой задаче незначительны. Имеются многочисленные экспериментальные подтверждения того, что молекулы водорода без катализаторов адсорбируются на поверхности наноуглеродных структур без образования прочных ковалентных связей, а только благодаря наличию слабого Ван-дер-Ваальсова взаимодействия (см., например, [11]). Квантовыми эффектами в МД-моделировании адсорбции пренебрегают. Значения теплот хемосорбции в условиях рассматриваемой задачи значительно выше (единицы и десятки кДж/моль) по сравнению с теплотами физической сорбции (доли и единицы кДж/моль).

4. Основы событийного моделирования

Модельные потенциалы парного взаимодействия из физических соображений обычно выбирают так, чтобы имелась потенциальная яма. В данной работе предлагается простейший кусочно-постоянный потенциал с одной потенциальной ямой. На рис.1 схематически приведены совмещенные графики потенциалов Ленарда-Джонса и кусочно-постоянного.

Рис.1. График зависимости потенциала Ленарда-Джонса (в ангстремах) от расстояния между центрами модельных частиц (сплошная линия) и график потенциальной ямы

Основные положения событийного моделирования приведены в работах [12-15]. Этот метод продемонстрировал свою эффективность при решении задач моделирования течения одноатомного инертного газа в рабочей области ионного двигателя [15], а также при моделировании процессов перекристаллизации [16, 17].

В применении к рассматриваемой задаче он сводится к следующему. Каждая модельная частица представляется в виде двухслойной сферы. Событиями являются столкновения внутренних и внешних частей модельных сфер. При столкновении внутренних частей расстояние между центрами становится равным d₀, внешних – d₁. Столкновение внутренних частей аналогично столкновению твердых сфер. Столкновение внешних частей сопровождается либо внутренним отражением без потери энергии, либо переходом извне во

внутреннюю часть с возрастанием кинетической энергии, либо изнутри во внешнюю часть с потерей кинетической энергии.

Между событиями перемещения прямолинейны и равномерны. Это позволяет представить процесс развития картины изменения координат центров модельных частиц как последовательность событий, совершающихся в дискретные моменты времени. Моменты наступления событий располагаются в порядке возрастания. Обработке подвергается событие, совершающееся в ближайший момент времени после текущего. Обработка события заключается в вычислении новых скоростей обеих модельных частиц в соответствии с требованием сохранения импульса, полной энергии и момента импульса в парном столкновении. Для каждой частицы вычисляются моменты времени наступления новых событий, в которых она может участвовать. Наименьший из этих моментов времени вставляется в очередь.

5. Учет порядка соседства

Однако моделирование структур атомов, связанных ковалентно, требует учета перестройки электронной плотности в окрестности взаимодействующих атомов [18, 19]. На рис. 2. схематически приведены особенности сил взаимодействия между атомами углерода в узле графеновой структуры. Атом 1 расположен в узле; атомы 2, 3, 4 являются соседними для атома 1. Между соседними атомами постулируется взаимодействие, обусловленное ковалентной связью (σ - связь, общее электронное облако). В данном случае взаимодействие является притяжением, так как расстояние между центрами этих атомов больше центральной части потенциала, но меньше, чем сумма внешних радиусов модельных сфер. Однако между атомами 2-3, 2-4, 3-4 взаимодействие иное; между «вторичными» соседями взаимодействие имеет дипольный характер. Оно описывается возрастанием радиуса центральной части парного потенциала, что приводит к отталкиванию. По отношению к атому 2 атомы 3, 4 являются соседями второго порядка.

Рис. 2. Соседи первого и второго порядков.

Учет отталкивания между соседями второго порядка позволяет построить устойчивую модель углеродсодержащих нанообъектов типа нанотрубок и фуллеренов [20] при довольно разнообразных потенциалах, содержащих яму той или иной формы (не только прямоугольной).

5. Особенности моделирования адсорбции на фуллерене С₆₀

Процесс адсорбции водорода на поверхности фуллеренов обладает особенностями, которые необходимо учитывать при моделировании. Одна из них – наличие ячеек как шестиугольной формы, так и пятиугольной. Результаты различных экспериментов [21] показывают, что длина связи С-С на границе гексагона и пентагона – 1.4 ± 0.05 Å (связь одинарная), на границе гексагона и пентагона – 1.48 ± 0.02 Å (связь двойная) (рис. 3).

Рис. 3. Длины связей в молекуле фуллерена С₆₀.

В данной работе рассматривалось численное моделирование взаимодействия фуллерена *C*₆₀ радиуса 3.53 Å с молекулярным водородом при температуре 77 К. Расчётная область выбрана размерами 40Å×40Å×40Å. Параметры для потенциалов, выбранные согласно [22, 23], приведены в таблице 1.

Взаимодействие	$d_0, \overset{\mathrm{o}}{\mathrm{A}}$	$d_1, \overset{\mathrm{o}}{\mathrm{A}}$	U , кДж/моль
$C-H_2$	3,179	3,279	0,154
$H_2 - H_2$	2,928	3,028	0,0657
<i>С</i> – <i>С</i> , тип «6-6»	1, 37	1,39	733,23
C-C, тип «5-6»	1,45	1,48	733,23
C - C, тип «6-6 & 5-6»	2,46	2,48	96,3
<i>С – С</i> , тип «5-6 & 5-6»	2,36	2,38	96,3

Таблица 1. Параметры потенциалов взаимодействия в случае фуллерена C_{60}

На рис.4 приведены результаты расчетов зависимости относительного массового содержания водорода от давления при температуре T=77K и различных давлениях (кривая 1). На том же графике кривая 2 соответствует результатам расчетов относительного массового содержания водорода молекулой фуллерена C_{60} при помощи пакета программ HyperChem в тех же условиях [24].

Рис 4. Адсорбционные изотермы при температуре T = 77 K: 1 – событийное моделирование, 2 – расчёты, проведенные в пакете HyperChem [24].

На рис. 5 представлено распределение молекул водорода в расчетной области после выхода системы в состояние равновесия.

Физическое время расчётов составило 1000пс, что соответствует 20 минутам машинного времени для компьютера с тактовой частотой 2 ГГц, если количество молекул водорода в расчетной области равно 120. В среде пакета НурегСhem аналогичные расчеты длятся примерно в 30 раз дольше.

Рис. 5. Фуллерен и молекулы водорода: 1 – свободная молекула водорода, 2 – адсорбированная молекула водорода, 3 – линия связи между водородом и углеродом

Описанные расчеты оформлены в виде пакета программ с рабочим названием Event_Chem_0. В него включены следующие блоки: создание твердотельных моделей УНТ и фуллеренов; задание параметров потенциалов; графическое 3D отображение коллектива модельных частиц; визуализация процесса расчета, в частности, гистограмм пространственной плотности водорода, а также развитый интерфейс для регулирования вспомогательных параметров.

8. Заключение

Таким образом, событийное моделирование является перспективным средством для изучения процесса адсорбции водорода углеродсодержащими структурами. Основным достоинством этого метода является высокая скорость расчетов при сохранении качества. Это означает, что с его помощью можно решать задачи моделирования адсорбции на пучках нанотрубок и вводить изначально дефекты в модельную структуру нанообъектов для рассмотрения возможности повышения емкости за счет воздействия на них облучением той или иной природы.

ЛИТЕРАТУРА

- 1. Елецкий А.В., Смирнов Б.М. Фуллерены и структуры углерода // Успехи физических наук. - 1995. - т.165, № 9. - С.977-1009.
- Тарасов Б.П., Лотоцкий М.В., Яртысь В.А. Проблема хранения водорода и перспективы использования гидридов для аккумулирования водорода // Российский химический журнал. - 2006. - т.12, № 6. - С.34-48.
- Churilov G.N., Fedorov A.S., Sorokin P.B., Novikov P.V., Bulina N.V., Marchenko S.A., Martinez Yu.S., Gedanken A. // Proc. IX Int. Conf. "Hydrogen Material Science and Chemistry of Carbon Nanomaterials". - 2005. - P.127.
- Dai G.P., Liu C., Liu M., Wang M.Z., Cheng H.M. Electrochemical hydrogen storage behavior of ropes aligned single-walled carbon nanotubes // Nano Lett. -2002. - № 2. - P. 503-506.
- Bashkin I.O., Antonov V.E., Bazhenov A.V., Bdikin I.K., Borisenko D.N., Krinichnaya E.P., Moravsky A.P., Ossipyan Yu.A., Ponyatovsky E.G., Fursova T.N., Harkunov A.I., Shulga Yu.M. Carbon materials hydrogenated under high pressure // Proc. VIII Int. Conf. "Hydrogen Material Science and Chemistry of Carbon Nanomaterials". - 2003. - P. 796-797.
- Chen Y., David T. Shaw, Bai X.D., Wang E.G., C. Lund, Lu W.M., D. D. L. Chung Hydrogen storage in aligned carbon nanotube // Appl. Phys. Lett. - 2001. -№ 78. - P. 2128.
- Фёдоров А.С., Сорокин П.Б. Плотность и термодинамика водорода, адсорбированного на поверхности однослойных углеродных нанотрубок // ФТТ. - 2006. - т. 48, № 2. - С. 377-382.
- Кузубов А.А., Попов М.Н., Втюрин М.А. Квантохимическое изучение процесса сорбции-десорбции водорода на углеродных нанотрубах // Вестн. КрасГУ. – 2006. – № 2. – С. 90–94.
- Хокни Р., Иствуд Дж. Численное моделирование методом частиц. М.: Мир, 1987.– 640 с.
- Wang Q., Johnson J.K. Molecular Simulation of Hydrogen Adsorption in Single-Walled Carbon Nanotubes and Idealized Carbon Carbon Slit Pores // J. Chem. Phys. -1999. - Vol. 110-1. -P. 577-586.

- 11. Tada K., Furuya S., Watanabe K. Ab initio study of hydrogen adsorption to nanotubes // Phys. Rev. B, Condens. Matter. 2001. -Vol. 63. P. 155-405.
- 12. Чернышев Ю.К. Применение теории систем для алгоритмизации прямого математического моделирования течения газа // Двигатели внутреннего сгорания. 2004. № 2. С. 44–47.
- 13. Чернышев Ю.К. Решение задач имитационного моделирования поведения большого количества модельных частиц Х.: ХАИ, 2006. 58 с.
- 14. Чернышев Ю.К. Событийное программирование. Применение к решению некоторых задач физики Х.: ХАИ, 2008. 68 с.
- 15. Левин С.С., Чернышёв Ю.К. Алгоритмизация событийного перемещения частицы в триангулярной сетке при имитационном моделировании течения газа // Открытые информационные и компьютерные интегрированные технологии. Х.:НАКУ «ХАИ». –2004. Вып. 23. С. 122 127.
- 16. Чернышев Ю.К. Имитационное моделирование фазовых переходов в плоских кристаллах простого вещества // Радиоэлектронные и компьютерные системы . – Х.: НАКУ «ХАИ». – 2007. – Вып. 2. – С. 95-100.
- 17.Слепичева М.А. Использование прямоугольного потенциала при имитационном моделировании фазовых переходов в простых кристаллах // Открытые информационные и компьютерные интегрированные технологии. – Харків, ХАІ. – 2008. – Вып. 38. – С. 211 – 216.
- 18. Соловьев М.Е., Соловьев М.М. Компьютерная химия. М.: Солон-Пресс, 2005. 536 с.
- 19.Кларк Т. Компьютерная химия: Пер. с англ. М.: Мир, 1990. 383 с.
- 20. Слепичева М.А., Чернышев Ю.К. Построение углеродсодержащих структур с помощью средств событийного моделирования // Материалы НТК ИКТМ, Харьков: ХАИ. 2009. С. 122.
- 21. Томилин Ф.Н., Аврамов П.В., Варганов С.А., Кузубов А.А., Овчинников С.Г. Возможная схема синтеза-сборки фуллеренов // Физика твёрдого тела. – 2001. – Т. 43. – № 5. – С. 936 – 943.
- 22. Wendy D. Cornell, et al. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules // J. Am. Chem. Soc. – 1995. – Vol. 117. – P. 5179 – 5197.
- 23. Глухова О.Е., Салий И.Н. Фуллереновый нанотермодатчик // Нано- и микросистемная техника. 2008. № 5. С. 64 68.
- 24.Вахрушев А.В., Липанов А.М., Суетин М. В. Моделирование процессов адсорбирования водорода наноструктурами // Альтернативная энергетика и экология. 2007. № 1. С. 13 20.

Надійшла 18.02.2010.

© М. А. Слепичева, Ю. К. Чернышев, 2010