УДК 536.24

Об одном численно-аналитическом подходе к математическому моделированию нестационарных процессов теплопроводности с большой скоростью нагрева

Ю. О. Кобринович, А. П. Слесаренко

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Дискретная математическая модель нестационарных тепловых процессов построена в структурно-разностной форме с использованием аналитических структур решения задач теплопроводности, точно удовлетворяющих нестационарным граничным условиям, и разностной схемы, трехслойной по времени и пятислойной по координатам. Неопределенные коэффициенты структур решения для каждого слоя во времени определяются из алгебраических уравнений, полученных методом наименьших квадратов.

Ключевые слова: дискретная математическая модель, краевая задача, аналитические структуры решения, метод наименьших квадратов.

Дискретна математична модель нестаціонарних теплових процесів побудована в структурно-різницевій формі з використанням аналітичних структур рішення задач теплопровідності, що точно задовольняють нестаціонарним граничним умовам, і різницевій схемі, що має три шари за часом та п'ять шарів за координатами. Невизначені коефіцієнти структур рішень для кожного шару за часом визначаються за алгебраїчних рівнянь, отриманих методом найменших квадратів.

Ключові слова: дискретна математична модель, крайова задача, аналітичні структури розв'язку, метод найменших квадратів.

A discrete mathematical model of unsteady thermal processes constructed in a structurally-difference form, using the analytical structure of the solution of heat conduction problems, just satisfying the unsteady boundary conditions, and difference scheme, three-layer time and five-layer coordinates. An undetermined coefficients solution structures for each layer over time is determined from the algebraic equations obtained by least squares.

Key words: discrete mathematical model boundary-value problem, analytic structure of solution, least-squares method.

1. Актуальность проблемы

Информация о температурном поведении конструкции на иррегулярном периоде теплового процесса востребована в ряде наукоемких отраслей техники: в описании поведения конструкции космического аппарата при его входе в атмосферу; элементов ядерного реактора; деталей сверхзвуковых и гиперзвуковых летательных аппаратов; для создания теплозащитных покрытий и других процессов, характеризующихся большим градиентом температур.

Численные решения нелинейных нестационарных задач отличаются дискретной представимостью и необходимостью анализа большого объема информации.

Предлагаемый численно-аналитический подход позволяет получить высокую точность результатов при небольших затратах машинного времени. Он универсален относительно форм и теплофизических свойств конструкции, которые учитываются точно, включая нестационарные граничные условия.

2. Постановка задачи. Структурно-разностный подход к решению.

Рассмотрим решение задачи теплопроводности с нестационарными граничными условиями [1, 2]: $\partial T(x, y, Fo)$

$$\frac{\partial I(x, y, Fo)}{\partial Fo} = \Delta T(x, y, Fo) + F_m(x, y, Fo)$$

$$\left(\pm \frac{\partial T(x, y, Fo)}{\partial x} + Bi(Fo)T(x, y, Fo)\right)\Big|_{\substack{x=1, \\ x=-1}} = Bi(Fo)T_{cp}(x, y, Fo)$$

$$\left(\pm \frac{\partial T(x, y, Fo)}{\partial y} + Bi(Fo)T(x, y, Fo)\right)\Big|_{\substack{y=1, \\ y=-1}} = Bi(Fo)T_{cp}(x, y, Fo)$$
(2.1)

 $T(x, y, 0) = \theta(x, y), \quad x, y \in \Omega, \quad 0 < Fo < \infty$

Точное решение модельной задачи, согласно [3], выберем в виде:

$$T_{m}(x, y, Fo) = Tcp(Fo) + (\varphi(x) - f_{1}(x)\frac{\partial \phi(x)}{\partial x}\frac{\partial f_{1}(x)}{\partial x} + f_{1}(x)Bi(Fo)\phi(x)) \times (\psi(y) - f_{2}(y)\frac{\partial \psi(y)}{\partial y}\frac{\partial f_{2}(y)}{\partial y} + f_{2}(y)Bi(Fo)\psi(y)),$$

$$(2.2)$$

где

$$\begin{split} \varphi(x) &= e^{-x^2}, \ \psi(y) = e^{-y^2}, \ \mathbf{f}_1(x) = 0.5(1-x^2), \ \mathbf{f}_2(y) = 0.5(1-y^2), \\ Bi(Fo) &= e^{-\gamma_1 \cdot Fo}, \ Tcp(Fo) = \gamma_2 \cdot \left(1 - e^{-\gamma_3 \cdot Fo}\right), \ x, y \in \Omega, \ 0 < Fo < \infty \end{split}$$

2.1 Аналитические структуры решения.

Структуру решения задачи (2.1) с учетом [1] представим в виде:

$$T(x, y, Fo) = \Phi_0(x, y, Fo) + \sum_{k,l} C_{k,l} \chi_{k,l}(x, y, Fo)$$
(2.3)

где
$$\Phi_0(x, y, Fo) = Tcp(Fo); \quad \theta(x, y) = T_m(x, y, 0)$$

$$F(x, y, Fo) = \frac{\partial T_{mu}(x, y, Fo)}{\partial Fo} - \left(\frac{\partial^2 T_{mu}(x, y, Fo)}{\partial x^2} + \frac{\partial^2 T_{mu}(x, y, Fo)}{\partial y^2}\right);$$

$$\chi_{k,l}(x, y, Fo) = P_k(x)P_l(y) - W_1(x, y) - Bi(Fo)P_k(x)P_l(y)\Big|_{x=1} - W_2(x, y)\left[\left(\frac{\partial P_l(y)}{\partial y}P_k(x)DW_2(x, y) - Bi(Fo)P_k(x)P_l(y)\right)\Big|_{y=1}\right];$$

На базе Р-операций [2] введем РЅ-операции:

$$\begin{split} W_{1}(x,y) &= 0.5\omega_{1}(x) + \omega_{2}(y)^{2} - \sqrt[\beta]{(0.5\omega_{1}(x))^{\beta} + (\omega_{2}(y))^{2\beta}};\\ W_{2}(x,y) &= 0.5\omega_{2}(y) + \omega_{1}(x)^{2} - \sqrt[\beta]{(0.5\omega_{2}(y))^{\beta} + (\omega_{1}(x))^{2\beta}};\\ \omega_{1}(x) &= (1 - x^{2})(1 + \alpha_{1} \cdot f_{1}(x) + \alpha_{2} \cdot f_{1}(x)^{2} + \alpha_{3} \cdot f_{1}(x)^{3} + \dots + \alpha_{n} \cdot f_{1}(x)^{n}), \quad (2.4)\\ \omega_{2}(y) &= (1 - y^{2})(1 + \alpha_{1} \cdot f_{2}(x) + \alpha_{2} \cdot f_{2}(x)^{2} + \alpha_{3} \cdot f_{2}(x)^{3} + \dots + \alpha_{n} \cdot f_{2}(x)^{n};\\ n &= \frac{\beta}{2} - 1; \quad \beta = 2N; \quad \omega_{1} \bigvee_{PS} \omega_{2} = \omega_{1} + \omega_{2}^{2} + \sqrt[\beta]{\omega_{1}^{\beta} + \omega_{2}^{2\beta}} \end{split}$$

где $C_{k,l}$ - неизвестные коэффициенты; $\Phi_0(x, y, Fo)$ функция, точно удовлетворяющая нестационарным неоднородным граничным условиям; $\chi_{k,l}(x, y, Fo)$ – базисные функции, точно удовлетворяющие нестационарным однородным граничным условиям; $P_k(x)$, $P_l(y)$ – нормированные полиномы Чебышева; $\alpha_1 = 0,25$ из условия нулевой кривизны опорных функций $\omega_1(x)$ и $\omega_2(x)$ на границе призмы.

2.2 Разностные схемы.

Дискретную математическую модель, описывающую нестационарные процессы для данной области, построим с использованием уравнений теплопроводности, разностных схем и структуры (2.3) решения задачи (2.1).

Эффективность применения схем повышенной точности подтверждается многочисленными научными результатами, полученными в школе академика Г.И. Марчука [3, 4]. Используем по временной переменной и по пространственным переменным трехслойную (2.5) и пятислойную (2.6) разностные схемы соответственно (2.5).

Для построения дискретной модели используем девятиточечную разностную схему типа «большой крест» [5]:

$$(\Delta T)_{i,j}^{s} = \frac{1}{12h^{2}} \left(-T_{i-2,j}^{s} - T_{i,j-2}^{s} - T_{i+2,j}^{s} - T_{i,j+2}^{s} + 16 \left(T_{i-1,j}^{s} + T_{i,j-1}^{s} + T_{i+1,j}^{s} + T_{i,j+1}^{s} \right) - 60T_{i,j}^{s} \right)$$

$$(2.5)$$

и трехслойную разностную схему [5]:

$$\left(\frac{\partial T}{\partial Fo}\right)_{i,j}^{s} = \frac{T_{i,j}^{s+1} - T_{i,j}^{s}}{Fo}, \ s = 1,2$$
$$\left(\frac{\partial T}{\partial Fo}\right)_{i,j}^{s} = \frac{T_{i,j}^{s-1} - 4 \cdot T_{i,j}^{s} + 3 \cdot T_{i,j}^{s+1}}{2 \cdot Fo}, \ s > 2$$
(2.6)

Структурно-разностная модель теплового процесса примет вид:

$$\begin{split} &\sum_{k,l} C_{k,l}^{s+1} \cdot \chi_{k,l_{i,j}^{s+1}} = \sum_{k,l} C_{k,l}^{s} \left\{ \left(\frac{F_{O}}{h^{2}} \cdot \left(\frac{1}{12} \cdot \left(-\chi_{k,l_{i-2,j}}^{s} - \chi_{k,l_{i,j-2}}^{s} - \chi_{k,l_{i,j-2}}^{s} - \chi_{k,l_{i,j-2}}^{s} - \chi_{k,l_{i,j-2}}^{s} - \chi_{k,l_{i,j-2}}^{s} + \chi_{k,l_{i,j+2}}^{s} \right) + \frac{4}{3} \left(\chi_{k,l_{i-1,j}}^{s} + \chi_{k,l_{i,j-1}}^{s} + \chi_{k,l_{i+1,j}}^{s} + \chi_{k,l_{i,j+1}}^{s} \right) - 5\chi_{k,l_{i,j}}^{s} + \chi_{k,l_{i,j}}^{s} \right) + \chi_{k,l_{i,j}}^{s} + \frac{F_{O}}{h^{2}} \left(\frac{1}{12} \cdot \left(-\Phi_{0}_{l-2,j}^{s} - \Phi_{0}_{l,j-2}^{s} - \Phi_{0}_{l+2,j}^{s} + \varphi_{0}_{l,j+2}^{s} \right) + \frac{4}{3} \left(\Phi_{0}_{l-1,j}^{s} + \Phi_{0}_{l,j-1}^{s} + \Phi_{0}_{l,j-1}^{s} + \Phi_{0}_{l,j+1}^{s} \right) - 5\Phi_{0}_{l,j}^{s} \right) - \left(\Phi_{0}_{l,j}^{s+1} - \Phi_{0}_{l,j}^{s} \right) + F_{m_{i,j}}^{s} \cdot Fo, s = 1,2 \\ &\sum_{k,l} C_{k,l}^{s+1} \cdot \chi_{k,l_{i,j}}^{s+1} = \sum_{k,l} C_{k,l}^{s} \left(\left(\frac{2 \cdot F_{O}}{3 \cdot h^{2}} \cdot \left(\frac{1}{12} \cdot \left(-\chi_{k,l_{i-2,j}}^{s} - \chi_{k,l_{i,j-2}}^{s} - \chi_{k,l_{i,j-2}}^{s} - \chi_{k,l_{i,j-2}}^{s} \right) - 5\chi_{k,l_{i,j}}^{s} \right) + \frac{4}{3} \left(\chi_{k,l_{i-1,j}}^{s} + \chi_{k,l_{i,j-1}}^{s} + \chi_{k,l_{i+1,j}}^{s} + \chi_{k,l_{i,j-2}}^{s} \right) - 5\chi_{k,l_{i,j-2}}^{s} - \chi_{k,l_{i,j-2}}^{s} - \chi_{k,l_{i,j-2}}^{s} - \chi_{k,l_{i,j-2}}^{s} \right) + \frac{4}{3} \left(\chi_{k,l_{i-1,j}}^{s} + \chi_{k,l_{i,j-1}}^{s} + \chi_{k,l_{i+1,j}}^{s} + \chi_{k,l_{i,j-2}}^{s} \right) + \frac{4}{3} \left(\chi_{k,l_{i,j-1}}^{s} + \chi_{k,l_{i,j-1}}^{s} + \chi_{k,l_{i+1,j}}^{s} + \chi_{k,l_{i,j-1}}^{s} \right) - 5\chi_{k,l_{i,j}}^{s} \right) + \frac{4}{3} \left(\chi_{k,l_{i,j}}^{s-1} + \chi_{k,l_{i,j-1}}^{s} + \chi_{k,l_{i,j-1}}^{s} + \chi_{k,l_{i,j-1}}^{s} \right) + \frac{4}{3} \left(\Phi_{0}_{l,j-1}^{s-1} + \Phi_{0}_{l,j-1}^{s} + \chi_{k,l_{i,j-1}}^{s} + \chi_{k,l_{i,j-1}}^{s} \right) + \frac{4}{3} \left(\Phi_{0}_{l,j-1}^{s-1} + \Phi_{0}_{l,j-1}^{s} + \chi_{h,l_{j+1}}^{s} + \Phi_{0}_{l,j+1}^{s} \right) - 5\Phi_{0}_{l,j}^{s} \right) \right) + \frac{4}{3} \left(\chi_{k,l_{i,j}}^{s-1} - \frac{1}{3} \left(\Phi_{0}_{l,j-1}^{s-1} + \Phi_{0}_{l,j-1}^{s} + \chi_{h,l_{j+1}}^{s} + \chi_{h,l_{j+1}}^{s} \right) + \frac{4}{3} \left(\chi_{k,l_{j+1}^{s-1} + \chi_{k,l_{j+1}}^{s} + \chi_{k,l_{j+1}}^{s} + \chi_{k,l_{j+1}}^{s} \right) \right) \right) + \frac{4}{3} \left(\chi_{k,l_{j+1}^{s-1} + \chi_{k,l_{j+1}}^{s-1} + \chi_{k,l_{j+1}}^{s-1} + \chi_{k,l_{j+1}}^{s}$$

2.3 Метод наименьших квадратов.

Количество разностных уравнений в линейной системе уравнений (2.7) больше, чем количество неизвестных. В матричной форме система уравнений (2.7) имеет вид:

$$B\overline{C} = \overline{G} \tag{2.8}$$

Умножим обе части уравнения на транспонированную матрицу ВТ: исходной системы (2.8), получим:

$$B^T B \overline{C} = B^T \overline{G} \tag{2.9}$$

Из линейной системы уравнений (2.9) определяется вектор неизвестных коэффициентов.

3. Вычислительный эксперимент

Для исследования иррегулярного этапа теплового процесса проведен вычислительный эксперимент. Точное решение модельной задачи (2.2) характеризуется большими градиентами температур во времени, изучаемый временной интервал – от 0.001Fo до 0.02Fo., вычисления проводились с шагом по времени 0.001Fo

В Таблице 1 представлены значения температуры и максимальной относительной погрешности вычисления температуры призмы при использовании разностных схем второго и четвертого порядков (параметры точного решения: $\gamma_1=10$, $\gamma_2=10~000$, $\gamma_3=10$; параметры структуры решения: $\beta=2$ DW₁(x,y) и DW₂(x,y) фиксированы на границе; 28 координатных функций; разностная сетка 2 500 узлов):

1 – 2 слоя по времени, 3 слоя по координатам (схема типа «малый крест»)

2-3 слоя по времени, 5 слоев по координатам (схема «большой крест» [3])

0-точное решение.

На рис. 1 представлены графики максимальной относительной погрешности вычисления температуры для параметров точного решения и структуры решения по данным таблицы 1.

Фиксируя значения DW₁(x,y) и DW₂(x,y) на границе и улучшая апроксимационные свойства структуры (2.4) с помощью параметров α_i и β можно значительно повысить точность вычислений. В таблице 2 представлены значения температур для трех различных слоев времени в трех различных точках призмы и максимальная погрешность вычислений, в зависимости от используемых параметров структуры (2.3) для 28 координатных функций. Параметры точного решения: γ_1 =10, γ_2 =10 000, γ_3 =1. В вычислении использована трехслойная разностная схема по времени и пятислойная по координатам (девятиточечная схема «ящик») [5] с 900 узлами для следующих значений параметров:

1. β =2; значения DW₁(x,y) и DW₂(x,y) не фиксированы на границе;

2. $\beta=2$; значения DW₁(x,y) и DW₂(x,y) фиксированы на границе;

3. β =4; α_1 =0,25; α_2 =-0,504; значения DW₁(x,y) и DW₂(x,y) фиксированы на границе;

ipiano y contine contrepe intere ce tentar onar passia inter passie entrear exert.						
Fo	n.	(0; 0)	(0,5; 0,5)	(1; 1)	ε max 10 ⁻³ , %	
	1	101,766468	100,362340	99,637121	0,295772	
0.001	2	101,766468	100,362338	99,637013	0,295915	
	0	101,766763	100,362403	99,636998	-	
0.01	1	954,035955	952,538744	951,761616	0,048711	
	2	954,035965	952,538748	951,761431	0,039580	

Табл. 1. Температура и погрешность вычисления температуры бесконечной призмы прямоугольного поперечного сечения для различных разностных схем.

	0	954,036341	952,538878	951,761155	-
0.02	1	1815,286418	1813,671399	1812,828403	0,033009
	2	1815,286431	1813,671405	1812,828168	0,024535
	0	1815,287000	1813,672000	1812,828000	-

Рис. 1. Максимальная относительная погрешность вычисления температуры бесконечной призмы прямоугольного поперечного сечения. P2_5 – схема «малый крест», P3 5 – схема «большой крест».

4. β =6; α_1 =0,25; α_2 =-0,504; α_3 =0,00748 значения $DW_1(x,y)$ и $DW_2(x,y)$ фиксированы на границе;

5. β =8; α_1 =0,25; α_2 =-0,504; α_3 =0,00748; α_4 = 0,012; значения DW₁(x,y) и DW₂(x,y) фиксированы на границе;

0. Точное решение.

Предложенный численно-аналитический подход позволяет оценивать значения функции на всей области допустимых значений теплофизических параметров. В таблице 3 представлены значения температур и максимальная погрешность вычислений для разных значений параметров γ_1 , γ_2 , γ_3 . Вычисления проводились для значений параметров структуры решения (2.3): β =8; α_1 =0,25; α_2 =-0,504; α_3 =0,00748; α_4 = 0,012; значенийй DW₁(x,y) и DW₂(x,y) фиксированых на границе, 28 координатных функций, для разностной сетки: 900 узлов, 3-х слойной разностной схеме по временной координате и 5-ти слойной схеме по

прямоугольного сечения оля различных значении параметров структуры решения						
Fo	n.	(0; 0)	(0,5; 0,5)	(0,9; 0,9)	ε max 10 ⁻³ , %	
0.001	1	12,260007	10,907811	10,188224	9,803168	
	2	12,259809	10,130429	10,170809	2,898095	
	3	12,260036	10,130376	10,170635	1,761756	
	4	12,260080	10,130337	10,170626	1,210340	

Таблица 2. Температура и погрешность вычисления температуры призмы

	5	12,260052	10,130348	10,170656	1,231853
	0	12,260102	10,130337	10,170630	_
	1	101,912174	100,470401	99,692641	24,407384
	2	101,911810	99,637413	99,681006	0,460124
0.01	3	101,912098	99,637033	99,680707	0,221598
0.01	4	101,912139	99,637007	99,680693	0,137525
	5	101,912102	99,637072	99,680747	0,143473
	0	101,912184	99,636998	99,680677	—
0.02	1	200,607608	199,052634	198,157133	85,327387
	2	200,607232	198,149158	198,196925	0,303676
	3	200,607529	198,148624	198,196482	0,120177
	4	200,607574	198,148624	198,196482	0,079684
	5	200,607536	198,148710	198,196556	0,084237
	0	200,607626	198,148602	198,196462	_

Таблица 3. Температура бесконечной призмы прямоугольного поперечного сечения для различных теплофизических характеристик материала пластины и температуры среды

Fo	n.	(0; 0)	(0,5; 0,5)	(1; 1)	ε max 10 ⁻³ , %
	1	12,244948	10,850275	10,130364	1,459364
0.001	2	12,260034	10,855707	10,130364	1,463355
0.001	3	3,264532	1,860206	1,134862	13,062929
	4	101,766695	100,362368	99,637024	0,148783
	1	101,751696	100,356961	99,637136	0,182608
0.01	2	101,912065	100,414663	99,637140	0,187809
0.01	3	12,360568	10,863166	10,085644	1,855411
	4	954,036222	952,538820	951,761297	0,019661
0.02	1	200,263441	198,868616	198,148748	0,099945
	2	200,607494	198,992287	198,148759	0,105542
	3	22,395554	20,780347	19,936818	1,048970
	4	1815,286696	1813,671490	1812,827961	0,011536

пространственным координатам (типа «большой крест»). В таблице 3 представлены результаты температуры для:

- 1. $\gamma_1 = 0,01, \gamma_2 = 10\ 000, \gamma_3 = 1;$
- 2. γ_1 =10, γ_2 =10 000, γ_3 =1
- 3. γ_1 =10, γ_2 =1 000, γ_3 =1;
- 4. γ₁=10, γ₂=10 000, γ₃=10;

На рис. 2 представлены графики температур для $\gamma_1=0,01$, $\gamma_2=10\,000$, $\gamma_3=1$ и. $\gamma_1=10, \gamma_2=10\,000, \gamma_3=1$ в момент времени 0,01Fo

Рис. 2. Температура бесконечной призмы прямоугольного поперечного сечения для теплофизических параметров: . $\gamma 1=0,01$, $\gamma 2=10~000$, $\gamma 3=1$ (нижний график) и. $\gamma 1=10$, $\gamma 2=10~000$, $\gamma 3=1$ (верхний график) в момент времени 0.01Fo.

Таблица 4. Максимальная норма разности температуры бесконечной призмы прямоугольного поперечного сечения между значениями функций для разного количества координатных функций.

Fo	10кф-6кф, 10 ⁻³	15кф-10кф, 10 ⁻³	21кф-15кф, 10 ⁻³	28кф-21кф, 10 ⁻³
0.001	10(055	52 50202	7 50005	0.745526
	196,255	53,59202	/,58085	0,/45536
0.01	170,2535	35,37801	9,179849	1,345754
0.02	158 6136	40 8035	10 63562	1 604177

В таблице 4 и на рис. 3 приведена оценка нормы разности между двумя значениями температуры для разного количества координатных функций и разностной схемы – 3 слоя по времени, 5 слоев по координатам (типа «большой крест») 900 узлов. Параметрами структуры решения: $\beta=8$; $\alpha 1=0,25$; $\alpha 2=-0,504$; $\alpha 3=0,00748$; $\alpha 4=0,012$, значения DW1(x,y) и DW2(x,y) фиксированы на границе. Теплофизические параметры: $\gamma 1=1$, $\gamma 2=10~000$, $\gamma 3=1$. На рис.4 показана максимальная относительная погрешность для вычислений с разным количеством координатных функций.

Рис. 3 Максимальная норма разности температуры бесконечной призмы прямоугольного поперечного сечения между значениями функций : Norm6_10 – для 6 и 10 координатных функций (к.ф.), Norm10_15 – для 10 и 15 к.ф., Norm15_21 – для 15 и 21 к.ф., Norm21_28 – для 21 и 28 к.ф.

Рис. 4. относительная погрешность вычисления температуры бесконечной призмы прямоугольного поперечного сечения для: P6 – 6 координатных функций (к.ф.), P10 – 10 к.ф., P15 – 15 к.ф., P21 – 21к.ф., P28 – для 28 к.ф.

4. Преимущества предложенного подхода

Предложенный численно-аналитический подход позволяет точно учитывать геометрическую и аналитическую информацию в граничных условиях задачи, а также точно учитывать зависимости во времени температуры среды и коэффициентов теплоотдачи.

Повышение точности решения задач может быть достигнуто тремя способами: увеличением количества узлов разностной сетки, увеличением количества используемых координатных функций и путем улучшения аппроксимационных свойств базисной функции за счет введения PS-операций при построении функции W с неопределенным коэффициентами a1...an, что позволяет увеличить точность вычислений на порядок и более при тех же затратах машинного времени.

В силу универсальности относительно изменения геометрической и аналитической информации в граничных условиях подход позволяет, не перестраивая структур, проводить оценку температуры с избытком и недостатком для минимальных и максимальных значений теплофизических параметров на области допустимых значений.

Представимость результатов решения в аналитической форме для каждого слоя во времени позволяет провести интерполяцию коэффициентов структур решения во времени и впервые получить решения сложных нестационарных задач теплопроводности в аналитической форме. Это позволяет перейти к созданию качественно новых информационных технологий и на их основе баз данных и организовать на новом уровне преобразование дискретной информации в аналитическую.

ЛИТЕРАТУРА

- 1. Слесаренко А.П. Математическое моделирование тепловых процессов в телах сложной формы при нестационарных граничных условиях// Пробл. Машиностроения. 2002. 5. №4 С.72-80.
- Рвачев В.Л., Гончарюк И.В. Кручение стержней сложного профиля: Учеб. пособие. - Харьков: Харьк. политехн. ин-т, 1973.- 21 с.
- 3. Ильин В.П. Численные методы решения задач электрооптики. Наука, сибирское отделение, 1974. 202 с.
- 4. Марчук Г.И. Методы вычислительной математики. М: Наука, 1977. 455 с.
- Ворожцов Е.В. Сборник задач по теории разностных схем: Учеб. пособие. Новосибирск: Изд-во НГТУ, 2000. – 41 с.

Надійшла у першій редакції 29.03.2011, в останній - 14.04.2011.