Вісник Харківського національного університету Серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління»

УДК 519.713

№ 703, 2005, c.36-41

On representation of a probabilistic finite-state automaton as a composition of a Markov chain and a deterministic finite-state automaton

S. M. Bogomolov, G. M. Zholtkevych V. N. Karazin Kharkiv National University, Ukraine

Probabilistic finite-state machines such as probabilistic finite-state automata, Markov chains and probabilistic suffix trees are used today in a wide amount of fields in pattern recognition, or in fields to which pattern recognition is linked: computational linguistics, bioinformatics and machine translation. In the present paper we formulate a criterion for determining when a probabilistic finite-state automaton can be represented as a composition of a Markov chain and a deterministic finite-state automaton.

Introduction

Probabilistic finite-state machines such as probabilistic finite-state machines such as probabilistic finite-state automata, hidden Markov models, Markov chains, probabilistic suffix trees are used today in a wide amount of fields in pattern recognition, or in fields to which pattern recognition is linked: computational linguistics, bioinformatics and machine translation [1-4].

One of the most interesting and perspective research objects is a probabilistic finite-state automaton (PFA). The characteristics of a finite-state deterministic automaton (DFA) and a Markov chain (MC) are quite well studied. That's why it makes sense to try to reduce the investigation of a PFA to the investigation of the behavior of these machines.

In the present paper we formulate a criterion for determining when a PFA can be represented as a composition of a MC and a DFA.

Initial concepts

Let's introduce a few definitions.

Definition 1

Probabilistic finite-state automaton (PFA) is a 5-tuple

 $M = (Q_M, \Sigma_M, P, q_{0M}, F_M)$

 Q_M – a finite set of states;

 Σ_M – a finite alphabet;

P-a mapping defining the transition probability function

(1)

$$P: Q_M \times \Sigma_M \times Q_M \to \mathbb{R}^+$$

$$\mathbb{R}^+ = \{x \in \mathbb{R} \mid x \ge 0\}$$

$$\left(\forall (q', a) \in Q \times \Sigma\right) \left(\sum_{q'' \in Q} P(q', a, q'') = 1\right)$$

 q_{0M} – an initial state;

 F_M – a set of admissive states.

Definition 2

Deterministic finite-state automaton (DFA) is a 5-tuple

$$D = \left(Q_D, \Sigma_D, T, q_{0D}, F_D\right) \tag{2}$$

 Q_D – a finite set of states;

 Σ_D – a finite alphabet;

T – a mapping defining the transition function. For convenience we may consider that T represents a transition graph between states.

 $T: Q_D \times \Sigma_D \to Q_D$

 q_{0D} – an initial state,

 F_D – a set of admissive states.

So the main difference between a DFA and a PFA is their transition function.

Definition 3

Markov chain (MC) p is defined by a transition matrix:

$$\mathbf{p} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1m} \\ p_{21} & p_{22} & \cdots & p_{2m} \\ \vdots & & & \vdots \\ p_{m1} & p_{m2} & \cdots & p_{mm} \end{pmatrix}$$
(3)

where p_{ii} is a probability of a transition from state q_i to state q_j

We may notice that defining matrix p means defining a function

$$p: Q_{p} \times Q_{p} \to \mathbb{R}^{+}, p(q_{i}, q_{j}) = p_{ij}$$
$$Q_{p} - a \text{ finite set of states.}$$
$$(\forall q' \in Q_{\pi}) \left(\sum_{q' \in Q_{\pi}} \pi(q', q'') = 1 \right)$$

Definition 4

Let $(q_1, a_1) \approx (q_2, a_2)$, when $(\forall q \in Q) (P(q_1, a_1, q) = P(q_2, a_2, q))$. This relation is an equivalence relation. Hence, it breaks set $U = \{(q, a) \in Q \times \Sigma\}$

into equivalence classes $U = \bigcup_{i=1}^{i=k} U_i$ where $U_i = \left\{ (q_i, a_i) \in Q \times \Sigma \mid \left(\forall \left\{ (q', a'), (q'', a'') \right\} \subset U_i \right) ((q', a') \approx (q'', a'')) \right\}$

Definition 5

In order to consider a composition of automata we need that $(\Sigma_M = \Sigma_D = \Sigma) \land (Q_M = Q_D = Q_\pi = Q) \land (F_M = F_D = F).$

PFA (1) can be represented as a composition of DFA (2) and a MC (3) if such functions T and π exist that $(\forall (q', a, q'') \in Q \times \Sigma \times Q) (P(q', a, q'') = \pi (T(q', a), q''))$.

Main part

Lemma

If PFA M is a composition of MC π and DFA D, then for T the following relationship holds true:

$$\left(\forall \{ (q_1, a_1), (q_2, a_2) \subset Q \times \Sigma, (q_1, a_1) \neq (q_2, a_2) \} \right)$$

$$\left(T(q_1, a_1) = T(q_2, a_2) \Rightarrow (q_1, a_1) \approx (q_2, a_2) \right)$$

$$\square$$

Assume the contrary:

$$\left(\exists \{ (q_1, a_1), (q_2, a_2) \subset Q \times \Sigma, (q_1, a_1) \neq (q_2, a_2) \} \right)$$

$$\left(T(q_1, a_1) = T(q_2, a_2) \land \overline{(q_1, a_1)} \approx (q_2, a_2) \right)$$

$$Let T(q_1, a_1) = T(q_2, a_2) = q'.$$

$$\overline{(q_1, a_1)} \approx (q_2, a_2) \Leftrightarrow \left(\exists q'' \in Q \right) \left(P(q_1, a_1, q'') \neq P(q_2, a_2, q'') \right)$$

$$P' = P(q_1, a_1, q'') = \pi \left(T(q_1, a_1), q'' \right) = \pi \left(q', q'' \right)$$

$$P'' = P(q_2, a_2, q'') = \pi \left(T(q_2, a_2), q'' \right) = \pi \left(q', q'' \right)$$

We obtain that $P' = P''$. However, according to (*) $P' \neq P''$.
We have a contradiction.

Let's consider the following bipartite graph $G = \langle V, E \rangle$: (4)

X = U Y = Q $V = X \cup Y$ $E = \{(x, y) \in X \times Y\}$

Theorem (criterion for determining when a PFA can be represented as a composition of a MC and a DFA)

A PFA (1) may be represented as a composition of a DFA (2) and a MC (3) if and only if a matching of the graph (4) exists which contains |X| edges.

1. (Necessity)

By hypothesis PFA M is represented as a composition of DFA D and MC π .

Let
$$W = \{ (U_i, T(q, a)) | U_i \in U, (q, a) \in U_i \}$$
.

Then W is a desired matching,

since 1)
$$|W| = |X|;$$

2)
$$(\forall q \in Q) ((\exists U_i \in U : (U_i, q) \in W) \Rightarrow (\exists ! U_i \in U | (U_i, q) \in W)).$$

Let us assume the contrary.

Then
$$(\exists q \in Q) (\exists U_i \in U \land \exists U_j \in U | U_i \neq U_j, (U_i, q) \in W, (U_j, q) \in W).$$

From the definition of W we may conclude that

$$(\exists (q',a') \in U_i, \exists (q'',a'') \in U_j) (T(q',a') = q \land T(q'',a'') = q).$$

Using Lemma we obtain that $(q',a') \approx (q'',a'')$ but $U_i \neq U_j$.

We reach a contradiction.

2. (Sufficiency)
Let
$$W = \{(U_i, q'_i)\}_{i=1}^{i=|X|}$$
 be a matching which consists of $|X|$ edges.
 $U_i = \{(q_i, a_i) \in Q \times \Sigma \mid (\forall \{(q', a'), (q'', a'')\} \subset U_i)((q', a') \approx (q'', a''))\}$
Let $(\forall i \in [1, |X|])(\forall (q, a) \in U_i)(T(q, a) = q'),$
 $\pi(q', q'') = \begin{cases} \pi(T(q_i, a_i), q'') = P(q_i, a_i, q'')if(\exists (U_i, q') \in W, (q_i, a_i) \in U_i) \\ 0 \text{ otherwise} \end{cases}$

Therefore, from the construction follows $P(q', a, q'') = \pi (T(q', a), q'')$.

Corollary

A PFA (1) may be represented as a composition of a DFA (2) and a MC (3) if and only if $|U| \le |Q|$.

It is obvious that the matching of the graph (4) which consists of |X| edges exists if and only if $|U| \le |Q|$.

It is also interesting to consider a question: how many ways are there to represent a PFA as a composition of a DFA and a MC?

Theorem

If a PFA (1) may be represented as a composition of a DFA (2) and a MC (3) then there are $A_{|O|}^{|U|}$ ways to do this.

From the construction of the graph (4) one can easily see that there are $A_{|Q|}^{|U|}$ matchings.

Now examine an example.

Let us consider a PFA shown in Fig. 1. In this case |U| = 4, |Q| = 5. So |Q| > |U| and we may conclude that this PFA can be represented as a composition of a DFA and a MC.

Fig. 2 Correspondence between equivalence classes U and states of a DFA

Let us find T and π . In order to do this we need to set up a correspondence between equivalence classes U and states of a DFA. The example of such a correspondence is shown in Fig. 2.

Table 1. Matrix T								
Input symbol State	а	b	с					
0	3	0	3					
1	1	3	3					
2	1	3	3					
3	1	3	3					
4	3	3	2					

7	able	2.	Matrix π	
_				

State State	0	1	2	3	4
0	0	0	0	0	0.4
1	0	0	0	0	1.0
2	0	0	0	0	1.0
3	0	0.6	0	0	0
4	0	0	0	0	0

Using a few examples let us examine if the found values of functions T and π satisfy definition 5:

$$P(q_0, b, q_4) = P(T(q_0, b), q_4) = P(q_0, q_4) = 0.4$$

$$P(q_0, b, q_1) = P(T(q_0, b), q_1) = P(q_3, q_1) = 0.6$$

$$P(q_1, a, q_4) = P(T(q_1, a), q_4) = P(q_1, q_4) = 1.0$$

Summary

The theorem proved in this paper gives a desired criterion for determining when a PFA can be represented as a composition of a MC and a DFA

REFERENCES

- 1. Хопкрофт Дж. Э., Мотвани Р., Ульман Дж. Д. Введение в теорию автоматов, языков и вычислений, 2-е изд.. М.: Вильямс, 2002. 528 с.
- 2. Трахтенброт Б. А., Барздинь Я. М. Конечные автоматы (поведение и синтез). М.: Наука, 1970. 400 с.
- 3. Paz, A. Introduction to Probabilistic Automata, Academic Press Inc., 1971.
- 4. Rabin, M. O. Probabilistic Automata, Information and Control, vol. 6, no. 3, pp. 230-245, 1963.