
 95

 « . .

»

 519.6 703, 2005, .95-108

Visual Semantic Query Formulation and Execution

in UnIT-NET IEDI

E. Dzhurinsky, V. Ermolayev, N. Keberle, V. Vladimirov
Zaporozhye National University, Ukraine

JDevelop.com, Ukraine

UnIT-NET Infrastructure for Electronic Data Interchange (IEDI) is the multi-layered

distributed software system for providing intelligent ontology-driven information

retrieval from distributed, heterogeneous, autonomous information resources (IRs).

IEDI is constructed according the ideology of mediator-wrapper architecture with

single centralized mediator. The paper presents the results of evaluation of the UnIT-

NET IEDI research prototype. Two autonomous distributed IRs - “University Entrant”

IR of Zaporozhye National University and “Dean’s Office” IR of V. Karazin Kharkiv

National University were used as a testbed. Experiments have shown practical

applicability of the approach proposed for the IEDI architecture. One of the stages of

the evaluation procedure is the assessment of the quality of interface between users

and IEDI mediator. The paper analyses lessons learned from the evaluation of UnIT-

NET IEDI user interface component – Query Formulation Interface. The analysis

proves the usability of the QFI; however there are refinements which have still to be

considered in the future work.

1. Introduction

The goal of a data integration system is to provide a uniform interface to various

data sources [1], and to enable users to focus on specifying the questions they have.

UnIT-Net1 IEDI is the software infrastructure providing for the Electronic Data

Interchange between the Universities and the State Bodies of Ukraine. More precisely,

IEDI is the multi-layered distributed software system comprising the software servers,

services, components and tools for providing intelligent ontology-driven information

retrieval from distributed, heterogeneous, legally and physically autonomous IR in the

frame of the organizational network of the National Higher Education System.

The task of IEDI mediator developed within UnIT-Net project is to provide

uniform, consistent and user-friendly interface to retrieve information from distributed

autonomous information resources (IRs).

The paper reports on the evaluation of UnIT-NET IEDI research prototype

implementation. One of the stages of the evaluation procedure is the assessment of the

quality of interface between users and IEDI mediator. The paper presents the study of

capabilities of Query Formulation Interface (QFI).

QFI – is a graphical tool which is the UnIT-NET IEDI user interface – uses visual

presentation of mediator domain ontology and information resources’ ontologies in the

form of a tree and in the form of graph; it allows to add concepts, properties and

1 UnIT-Net: IT in University Management Network. TEMPUS/TACIS project MP-JEP-2010-2003.

http://www.unit-net.org.ua/

96 E. Dzhurinsky, V. Ermolayev, N. Keberle, V. Vladimirov

additional constraints to a user query under construction; it stores user query using the

concept of “basket”; it generates initial query to the mediator, initiates sub-queries

extraction for the underlying IRs, collects responses and visually presents the

responses to the user.

The paper is structured as follows: Section 2 discussed the IEDI framework and its

main tasks; Section 3 describes IEDI environment chosen to bring the framework to

life; Section 4 describes QFI in details; in the Section 5 presented are the results of

experiments with IEDI; Section 6 presents the analysis of experiment results; Section

7 surveys the related work; Section 8 concludes the paper.

2 UnIT-Net IEDI Framework

From the variety of organizational platforms for integration of heterogeneous data

sources (mediator-wrapper [1], federated database systems [2] etc) for UnIT-NET

IEDI purposes only mediator-wrapper architecture gives the balance of centralized

control and to a certain end a freedom in work with autonomous IRs.

Shortly describe the UnIT-NET IEDI architecture (see Fig. 1, also [3], [4]).

Figure 1. The reference architecture of the UnIT-NET IEDI

There is one IEDI mediator, its main tasks are:

- querying distributed autonomous semantically heterogeneous IRs (including

user query formulation, query rewriting, results mark-up)

- registering IR

- maintaining coherent semantic descriptions

IRs are autonomous, distributed, heterogeneous and communicate with IEDI

mediator by means of intelligent IR wrappers implemented as web services.

 Visual Semantic Query Formulation and Execution ... 97

Each IR due to its autonomy has its own representation of the conceptualization of

the domain, formally specified by IR conceptual schema. The hierarchy of IEDI

ontologies has been developed to integrate these local views into the global view of

the mediator.

Two main approaches to integrate data and answer queries without materializing a

global schema [5] are “global-as-view” and “local-as-view”. Global-as-view approach

prescribes for every domain conceptual schema concept to have a view over the IRs.

On the contrary, local-as-view approach provides for each concept of an IR a view

over the domain conceptual schema. Both approaches have their advantages and

drawbacks; e.g. global-as-view is tolerant to answering complex queries and less

flexible for maintaining frequently changed IRs; local-as-view approach is flexible

with respect to changes in IRs, but its operation time increases exponentially to the

number of IRs involved.

UnIT-NET IEDI explores “global-as-view” approach [6] and query rewriting

technique ([7], [8]) to reformulate queries over IRs.

Domain knowledge is structured in the hierarchy of ontologies (see also [4], [9]).

Each IR has own Information Resource Ontology (IRO), containing all essential (from

the point of view of IR provider) concepts and properties of underlying IR domain.

The goal of Mediator Domain Ontology (MDO) is to collect and merge all the

knowledge from IROs, possibly adding necessary levels of abstraction.

Rewriting technique [1] makes use of mapping rules applicable to initial query to

obtain new queries. In IEDI mapping rules are stored in mapping ontologies. IR-

Domain Mapping Ontology (IRDMO, see Fig. 2a) stores mappings between IRO and

MDO. IRO-IR Schema Mapping Ontology (see Fig. 2b) is constructed for every IR to

store mappings of IR ontology terms to underlying structures of IR.

IRDMO is constructed in a way to contain the minimally necessary mappings for

the MDO-IRO pairs. Only the mappings of non-inherited slots are stored for each

MDO concept. IEDI mediator uses Late Binding technique [9] to detect all necessary

slots of concepts during formulation of sub-queries to IROs.

All ontologies in UnIT-NET were developed with help of ontology editor Protégé

3.02 and are presented in OWL-DL [10], thus they have a sound and formal basis to

verify consistence of ontologies.

3 IEDI Environment

All functional components of IEDI architecture are implemented in Java as web

services. IR wrapper web services and IEDI mediator web service are run on Apache

Tomcat3 Web server.

2 Protégé 3.0 is available at the URL: http://protege.stanford.edu
3 Apache Tomcat Web server is available at the URL: http://jakarta.apache.org/tomcat/index.html

98 E. Dzhurinsky, V. Ermolayev, N. Keberle, V. Vladimirov

Figure 2. The structures of mapping ontologies

Query Formulation Interface is made as separate GUI client desktop application

working together with the mediator and operating on Apache Tomcat Web server as

well. All the functional components of IEDI architecture (QFI, servers inside the

mediator) may be distributed. Communications between functional components are

based on SOAP and implemented with help of Apache SOAP processing service4. The

architectural details of generic IR wrapper server are presented in [11].

Jena5 2 API – Java-based framework for building Semantic Web applications – was

chosen to store and query IEDI ontologies. It provides a programmatic environment

for RDF, RDFS and OWL, including a rule-based inference engine6. Jena is an open-

source project and has good support level from developers’ team.

4 Apache SOAP processing service is available at the URL: http://ws.apache.org/soap/
5 Jena 2 API is available at the URL: http://jena.sourceforge.net/
6 Description of Jena features can be found at the URL: http://simile.mit.edu/reports/stores/index.html

 Visual Semantic Query Formulation and Execution ... 99

Internal language for querying IEDI ontologies is RDQL [15], as far as RDQL has

implementation in Jena 2 API. The comprehensive survey of all existing query

languages for RDF is given in [12].

User interface for query formulation – QFI – was written as Java SWING graphical

user interface application.

4 Visual Query Formulation with QFI

In IEDI it is not required that a user codes his or her queries in RDQL notation.

Instead, the tool for ontology-driven Query Formulation Interface (QFI) is provided by

the IEDI mediator.

The general requirement to QFI was that a user should have a visual ontology-

based interface which allows him or her to interactively choose the terms of the MDO,

to apply constraints to these terms and, thus, to formulate the query. The user query

should be generated automatically from the set of the chosen ontology elements

(concepts, properties constrained with the required terms).

The aim of visual query formulation interface in UnIT-Net is twofold.

First, QFI serves as the tool for domain ontologies navigation and learning. This

allows user to be aware of the semantics of concepts and questions they will further

pose to the mediator.

Second, QFI embeds all the mechanisms for subsequent querying the knowledge

stored in mediator/resources. This allows user to pose queries with no extra

knowledge on query languages inside the mediator.

Let’s walk through the presentation of the following sample query “Entrants from

Zaporozhye, and their schools descriptions” in QFI (see Fig. 3).

Figure 3. Visual presentation of the query “Entrants from Zaporozhye and their schools

descriptions”

Left upper frame shows the taxonomy of loaded ontology (taken from .owl file).

To ease the understanding of the ontology only datatype properties are presented

visually in the QFI for each concept – only these properties may appear with value

100 E. Dzhurinsky, V. Ermolayev, N. Keberle, V. Vladimirov

restrictions in the query. For example, concept “School” has only two datatype

properties – “descrOfSchool” and “abbreviation”, and the other properties of this

concept are object properties, relating “School” to other concepts in the ontology.

Right upper frame visualizes the ontology. QFI allows three modes of interface

regulated with radio buttons and a scroll bar: “zoom” – to visually zoom the

neighborhood of the concept; “rotate” – to rotate the whole structure around selected

concept; “hyperbolic” [13] – to view the structure in the “fish eye” manner. The latter

technique assigns more display space to a portion of the hierarchy while still

embedding it in the context of the entire hierarchy. This supports a smooth blending

between focus and context, as well as continuous redirection of the focus.

Left bottom frame shows comments (taken from rdf:comment tags) to the

selected concept or slot. Right bottom frame visualizes the contents of the current

query.

QFI according to the classification of visual query systems [14] explores diagram-

based approach for domain knowledge and query structure visualization. QFI is suited

to construct queries only from terms already existing in domain ontology. Query

results’ presentation is form-based and query formulation is visualized as a kind of

“unconnected path” visualization strategy [14].

Figure 4. Initial query formulation in IEDI reference architecture

The process of initial query formulation in QFI is presented in Fig. 4.

Visual Query (VQ) is constructed by the user with help of visual interface of QFI.

We borrow the concept of a “basket” from e-commerce applications to store elements

of the visual query. Serializing Java objects into XML is done with help of XStream7.

7 XStream available at URL: http://www.xml.com/pub/a/2004/08/18/xstream.html

 Visual Semantic Query Formulation and Execution ... 101

Figure 5. Mark-up for Visual Queries basket content

The user adds necessary concepts to the basket, assigns additional restrictions on

the values of properties. The fragment of the basket content for query “Entrants from

Zaporozhye and decrtiptions of their schools” is shown in the Fig. 5.

After the query is built visually, QFI generates initial RDQL query. The main

problem here comes from the fact that the user is free to choose arbitrary concepts

from the ontology. It may happen that the graph constructed over these concepts is

unconnected. As it was shown in [9] such graph corresponds to a “bad” initial query,

resulting in redundant responses from IRs and rather artificial content of these

responses. To avoid this situation QFI makes “bad” queries “good” by automatically

searching the paths between concepts and incorporating necessary parts of ontology

(concepts, object properties) into the resulting Initial Query (IQ). Dijkstra algorithm8

for the search of the shortest path in a graph has been used to implement this

intelligent functionality. This algorithm applies to ontology represented as directed

graph – concepts are treated as vertexes, object properties – as edges, and tries to find

shortest paths between concepts from user query.

QFI allows to make changes directly to the RDQL presentation of the query, and

then – to save a new query. This feature is useful in case when a user really needs

“bad” query to be executed (e.g. to receive the Cartesian product of instances of

several concepts), or when the user is experienced in the domain ontology and is able

to describe the path between directly unrelated concepts in RDQL himself.

Fig. 6 shows the RDQL query automatically constructed in QFI for “Entrants from

Zaporozhye and their schools descriptions” example. The following triples were

automatically added into the resulting query:

First triple was added to describe the path between concepts “Entrant” and

“School”, and second triple describes the path between “School” and

“CityEndSchool”.

8 Realization of Dijkstra algorithm for shortest past search was taken from JDSL - Data Structures

Library in Java , available at the URL: http://www.cs.brown.edu/cgc/jdsl/

102 E. Dzhurinsky, V. Ermolayev, N. Keberle, V. Vladimirov

When the initial query is ready, QFI connects to the IEDI mediator, passes this

query and waits for the results. Then QFI performs results’ mark-up in terms of the

ontology whose concepts were in the query and brings the results to the user.

Figure 6. RDQL query generated with QFI

(?a, prefix:schoolNumberForEntrant,?b) and
(?b, prefix:cityEndSchoolForEntrant,?c)

In addition, QFI stores queries history to allow user to easily pose frequently used

queries. Upon the user request QFI may store the particular responses from IRs as

well.

As far as initial query is formulated for the whole MDO QFI initiates ontology-

driven sub-queries extraction (see detailed description of the ODSQE algorithm in [9])

to obtain sub-queries to the registered IRs. These RDQL sub-queries are partial in the

sense that not every MDO concept/property from the initial query should have

correspondences in every registered IR. In spite of this, it is guaranteed that each

partial RDQL query is correct and produces result. All peculiarities of sub-queries

extraction are reported in [9]. Then IEDI mediator transforms each sub-query into the

IR query and sends it to the IR. Current implementation of IEDI uses RDQL-SQL

transformation algorithm worked out in [11]. IRO concepts and slots are mapped into

table names and field names of the underlying relational IR scheme. This mapping

according to the IEDI ontologies hierarchy is stored in IRO-IR Scheme Mapping

ontology.

IR wrappers accept the sub-queries, initiate their execution and perform results

mark-up in terms of respective IRO. The details of IR wrapper algorithms and

realization are reported in [11].

 Visual Semantic Query Formulation and Execution ... 103

Figure 7. Response obtained for the query

E.g. query “Entrants from Zaporozhye and their schools descriptions” had the

following response (see Fig. 7).

5 Experiments with QFI

Evaluation experiment was planned as follows. There were chosen two

autonomous IRs registered into the IEDI mediator – “University Entrants” IR of

Zaporozhye National University and “Dean’s Office” IR of V. Karazin Kharkiv

National University. “University Entrants” IR is run on MS SQL Server 2000

platform, “Dean’s Office” IR uses MS Access.

The preparatory stage consisted of construction of experimental query set and

installation of IR wrappers on the IRs.

The principle of organizing the query set was that IEDI mediator should correctly

answer queries specific to the given IR, and additionally it should be able to answer

queries over common concepts of MDO, which have several mappings in IRs.

Each IR support team was asked to prepare a set of queries intrinsic to the IR and

formulated in natural language. The size of each query set was approximately 25

queries. As far as frequently asked queries are usually hardwired into the visual

interface of information system, most of the queries in the set were taken from that

interface. Resulting query sets were formed without any restrictions which might be

influenced by the IEDI mediator architecture, ontologies hierarchy and the query

formulation language.

Natural language query set over MDO concepts was prepared by MDO support

team at ZNU. The main requirement to this set was to intensively use concepts

common to both IRs and to explore taxonomy of concepts.

104 E. Dzhurinsky, V. Ermolayev, N. Keberle, V. Vladimirov

The main stage of the experiment was as follows.

At first, each IR support team has formulated and executed queries from their

query sets using QFI and IEDI mediator. The correspondent IR itself was used

locally. This has allowed further use the IR query set as a testbed for checking

correctness of IRO, IRO-IR Schema Mapping Ontology and of RDQL-SQL

transformation algorithm.

At second, MDO support team has re-run IR query sets, when these IR were used

remotely. This has proved the reliability of IEDI mediator – wrappers communication

through distributed web-services.

At third, MDO support team has formulated in QFI and executed MDO query set

to check correctness of sub-queries extraction and IR responses gathering.

For each query sets it was proposed to IRO/MDO support teams to fill in a

questionnaire during the main stage of experiments. They were asked to outline the

reasons of complexity in query formulation. The results of their answers are shown in

Table 1 (several reasons for one query were allowed).

Table 1. Users vision of complexity in query formulation in IEDI

Reason

Query sets

IEDI

architecture

and tasks

RDQL

limitations

QFI

implementation

IR query sets 0% 36% (18 of 50) 16% (8 of 50)

MDO query set 36% (9 of 25) 36% (9 of 25) 60% (15 of 25)

Both IR support teams were strongly familiar with correspondent domain; however

they used QFI with very little respect to its factual capabilities. They expected to get

the results in the form similar to their IR native user interface, where the aggregate

values (sums, average values etc) are of common use. That’s why they’ve put the

restrictions of RDQL on the first place of complexity reasons.

MDO support team was familiar with correspondent domains, and this team was

better informed of factual capabilities of QFI and IEDI mediator. Their main task was

to pose queries involving concepts from both IRs. They’ve outlined that IEDI

mediator does not merge responses from IRs, but the most complex thing was to

compare values from IRs between each other. This has lead to first place of QFI

limitations for complexity reasons.

However it should be pointed out that only queries which contained value

restriction of non-string data types were failed. The percentage of such queries in the

sets was 4% (2 queries of 50).

Maximal delay of response for querying IR situated in the same network with the

user and the IEDI mediator was proportional to the response size and did not exceed 5

seconds. For querying IR via remote access both to the mediator and an IR the

maximal response delay caused by network connection was 50 seconds.

6 Lessons Learned and Future Research

Experiment with the user interface component of IEDI mediator shows that visual

query formulation supplied with native language-oriented interface is very

comfortable and easy to use. For novices in the domain it was a bit complex to

 Visual Semantic Query Formulation and Execution ... 105

understand the context of a particular ontology concept, and they were forced to read

comments to definitions of concepts and properties. Additional but expected

inconvenience was related with the situation when users navigate and query ontology

with concepts/properties’ names given in a foreign language.

Results obtained during the implementation and testing stages of UnIT-NET

project have pointed out current restrictions of the interface between users and IEDI.

Interface restrictions were divided into three types: restrictions imposed with the

internal query language – RDQL, simplifications done for the whole IEDI

architecture, and simplifications of the current version of QFI.

The first influencing category of restrictions was the internal query language.

RDQL does not allow aggregation functions to be applied as at the stage of initial

query formulation, as at the stage of results mark-up.

Certain limitations or, better say, simplifications were made to the IEDI

architecture. One of them is the simplified structure of IRDMO. Currently the

mapping is of the form of equality between concepts and properties from different

ontologies. However, practically we were faced with the situation when MDO

property may be represented as certain function over IRO properties and concepts.

This function may in the primitive case be string concatenation function. E.g. MDO

slot “address” is atomic and contains street, building number, apartment number and

city name, while in one of IRs there is no “address”, but separate “street”,

“building”, “city”, “flat” slots. In more complex case the function should involve the

instances of property values. E.g., in one IR the “gender” property of a person has the

values “male” and “female”, and in the other IR – correspondent values were “m”

and “f”.

Moreover, as the whole IEDI architecture was not configured for results merging

and fusion (it was beyond the scope of UnIT-NET), this has led to the situations when

the user had to analyze the responses from the IRs one by one.

QFI limitations were outlined as follows:

- user cannot see object properties of concepts – this leaves the user “outside

the kitchen” of initial query formulation

- user unfamiliar with RDQL cannot really approve query prepared by the QFI

and he/she is forced to skip the query approval stage

- QFI currently supports value restrictions “equal” and “not equal” for datatype

properties. However the whole set of value restrictions provided in the RDQL

specification [15] can be easily added to the QFI

- QFI due to limitations of RDQL does not allow aggregation functions to be

applied as at the stage of initial query formulation, as at the stage of results

mark-up

- QFI currently does not allow to compare one property values with another

property values, e.g. in the form “concept1.property1 = concept2.property2”

- QFI does not allow to choose values of property from the list of values stored

in the underlying IR

- QFI does not support all data types, which can be in the underlying domain.

Currently only string values are allowed in value restrictions.

In spite of the fact that the highest quantity of negative user feedbacks (see Table

1) was obtained because of limitations of QFI, all these limitations are easy to

overcome.

106 E. Dzhurinsky, V. Ermolayev, N. Keberle, V. Vladimirov

The situation with internal query language restrictions is different. At present,

RDQL syntax is fixed. One solution is to choose the RDF query language already

possessing all necessary features (at least, aggregation). Such languages as SeRQL[12]

and SPARQL[16] seem good candidates for the purposes of UnIT-NET IEDI. Another

solution for IEDI is to enhance Results Mark-Up Translation Server (see Fig.1).

Queries with calculation of maximum/minimum/count/average values etc. may in that

case be performed in two steps: computation of RDQL query result “as is”, without

aggregation, and then before presenting the result to the user – to calculate requested

aggregation functions (on the mediator side, or at the client side).

Negative user feedbacks concerning the limitations of UnIT-NET IEDI architecture

appear when the semantics of a user query requires merging of the IR responses. This

problem is also of great importance for the IEDI and is one of future research direction

for UnIT-NET consortium.

7 Related Work

Mediator-wrapper architecture [17] provides the syntactic and semantic

interoperability [1] with help of intermediate layer (mediator) responsible for

unification of user interface to distributed heterogeneous IRs presented with their

wrappers.

The number of projects in intelligent information retrieval advocates ontology-

based knowledge integration from autonomous heterogeneous distributed information

resources. The review of state-of-the-art in this direction one can find in [4], [9], [18]

and [19].

Functionality and aesthetic presentation of user interface influences future use of

the whole system. As it was mentioned in [14], “…It is worth noting that most people

interacting with computers see only the system interface. Thus, it becomes a very

important component of a software system from the design phase onwards.” There are

a lot of investigations focused on visual query system development for databases. The

detailed survey and classification of approaches in that field may be found in [14].

Such approaches are rather strict – they assume that user query may consist only of

terms already described in the domain.

However, last decade research projects pay more attention to intelligent query

interfaces in order to best capture the semantics of a user query. In the variety of

proposed techniques outline the following.

User profiles (see a survey in [20]) are often considered as storages of user

personal knowledge.

Intensional navigation in SEWASIE ([21], [22]) is used for incremental user query

construction through domain ontology navigation. SEWASIE approach allows

refinement of existing query terms or even invention of new query terms basing on

existing ontology terms and Boolean connectors. Resulting query is then subjected to

satisfiability checking w.r.t. domain ontology with help of a reasoning system

supporting domain ontology definition language.

Query rewriting techniques [7], [8], [20] apply a set of rules to reformulate user

query into terms of underlying resources.

 Visual Semantic Query Formulation and Execution ... 107

8 Conclusions

The paper reports on the results of evaluation of the UnIT-NET IEDI research

prototype. The focus of the paper is the intelligent visual interface – QFI – the

graphical tool aiming to assist a user to formulate his/her queries to the resources

registered to IEDI. The evaluation of the proposed solutions of IEDI architecture is

made experimentally by the members of UnIT-NET consortium. Experiments have

shown practical applicability of the approach proposed for the IEDI architecture. One

of the stages of the evaluation procedure is the assessment of the quality of interface

between users and IEDI mediator. The paper analyses lessons learned from the

evaluation of UnIT-NET IEDI user interface component – Query Formulation

Interface. The analysis proves the usability of the QFI; however there are refinements

which have still to be considered in the future work.

Acknowledgements

The authors would like to express their gratitude to the members of the UnIT-Net

project consortia for their collaborative help in bringing the reported results to life.

REFERENCES

1. Wiederhold G., Genesereth M. The conceptual basis for mediation services. IEEE

Intelligent Systems, September/October, 1997, 38-47.

2. Sheth A. and Larson J. Federated Database Systems for Managing Distributed,

Heterogenous, and Autonomous Databases. ACM Computing Surveys, 22:3, 183-

236, ACM Press, 1990.

3. Ermolayev, V., Spivakovsky, A., Zholtkevych, G.: UnIT-NET IIDE:

Infrastructure nationale ukrainienne pour l’intraéchange de données électroniques.

Colloque National de la Recherche Universitaire dans les I. U. T. Actes de

Colloque, Tome 1. Sciences et Techniques de l' Ingenieur, Nice, May, 6-7, 2004,

p. 113-121.

4. Ermolayev, V., et al.: The Infrastructure for Electronic Data Interchange.

Reference Architecture Specification. Version 1.0. UNIT-NET Deliverable No

D2.2.D.1. URL: http://www.compscipreprints.com/comp/Preprint/eva/20040228/1

5. Xu Li, Embley D.W. Combining the Best of Global-as-View and Local-as-View

for Data Integration. 3-d Intl. Conference on Information Systems Technology and

its Applications (ISTA'2004), Salt Lake City, Utah, USA, July 15-17, 2004, 123-

136.

6. Chawathe S. et al. The TSIMMIS project: Integration of heterogeneous

information sources. Proc. of the 10th Meeting of the Information Processing

Society of Japan, Tokyo, Japan, 1994, 7-18.

7. Baader F. et al.: Rewriting concepts using terminologies. 7th Intl. Joint Conf. on

Principles of Knowledge Representation and Reasoning (KR 2000), 2000, 297-

308.

8. Lattes V.; Rousset M.-C.: The Use of CARIN Language and Algorithms for

Information Integration: The PICSEL System. Intl. J. of Cooperative Information

Systems, 9(4), 2000, 383-401.

9. Ermolayev. V., Keberle, N., Shapar, V., Vladimirov, V.: Ontology-Driven Sub-

Query Extraction for Distributed Autonomous Information Resources in UnIT-Net

108 E. Dzhurinsky, V. Ermolayev, N. Keberle, V. Vladimirov

IEDI. 3-d Intl. Conference on Information Systems Technology and its

Applications (ISTA'2004), Salt Lake City, Utah, USA, July 15-17, 2004,137-150.

10. OWL Web Ontology Language Reference. W3C Proposed Recommendation, 15

December 2003. URL: http://www.w3.org/TR/owl-ref/ (last checked: 08.07.2005)

11. Ermolayev. V., Keberle, N., Shapar, V., Vladimirov, V.: Semantically Reinforced

Web Services for Wrapping Autonomous Information Resources. Bulletin of V.

Karazin Kharkiv National University, – 2004. – 629. Series “Mathematical

Modelling. Information Technology. Automated Control Systems”, Issue 3. –

p.56-69.

12. RDF Query Survey. URL:http://www.w3.org/2001/11/13-RDF-Query-Rules/ (last

checked: 08.07.2005)

13. Lamping, L.; Rao, R.; and Pirolli, P. A Focus+Context Technique Based on

Hyperbolic Geometry for Visualizing Large Hierarchies. Proc. of the ACM

SIGCHI Conference on Human Factors in Computing Systems, 401-408. New

York: ACM, 1995.

14. Catarci T., Costabile M.F., Levialdi S., Batini C. Visual Query Systems for

Databases: A Survey. Journal of Visual Languages and Computing, 8(2), 1997,

215–260.

15. RDQL – A Query Language for RDF. W3C Member Submission, 9 January 2004,

URL: http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/ (last

checked: 08.07.2005)

16. SPARQL Query Language for RDF. W3C Working Draft, 19 April 2995. URL:

http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050419/ (last checked:

08.07.2005)

17. Wiederhold G. Mediators in the Architecture of Future Information Systems.

IEEE Computer, 25, 3(March), 1992, 38-49.

18. Keberle N. Heterogeneous database and knowledge-based integrating systems: the

review. Visnyk of the Lviv University. Series Applied mathematics and Computer

Science. 2002, No.4, 163-172 (In Ukrainian).

19. Wache, H. et al.: Ontology-Based Integration of Information - A Survey of

Existing Approaches. In: (A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt, M.

Uschold) Proceedings of the IJCAI-01 Workshop on Ontologies and Information

Sharing, Seattle, USA, August 4-5, 2001, 108-118.

20. Ermolayev, V., Keberle, N., Plaksin, S., Vladimirov. V.: Capturing Semantics

from Search Phrases: Incremental User Personification and Ontology-Driven

Query Transformation. In: Proc. of the 2-nd Int. Conf. on Information Systems

Technology and its Applications (ISTA'2003), Kharkiv, Ukraine, June 19-21,

2003, 9-20.

21. Dongilli P., Franconi E., Tessaris S. Semantics Driven Support for Query

Formulation. Proc. of the 2004 Intl. Workshop on Description Logics (DL 2004),

vol. 104, Whistler, BC, Canada, June 2004.

22. Catarci T. et al. Usability evaluation tests in the SeWAsIE (SEmantic Webs and

AgentS in Integrated Economies) project. Proc. of the 11th Intl. Conf. on Human-

Computer Interaction (HCII 2005), 2005.

