
 87

 !"#$% &'(%!)"*%+,+ #'-!+#'.*#+,+ /#!)0("$101/

20(!3 «4'105'1$6#0 5+70.8)'##3. 9#:+(5'-!;#! 10<#+.+,!=. >)1+5'1$?+)'#! "$"105$

/@(').!##3»
ABC 004:378.1 D 847, 2009, ".87-97

Integrated Environment for Software Development and Analysis

L. Globa, T. Kot, D. Lysenko
National Technical University of Ukraine, Information Telecommunication Networks

Department, Kiev, Ukraine

The article deals with the compare of standard, new suggested information system (IS)

development logical stages and realizing IS like system based on multithread

processing. Developed systems, functioning in the telecommunication environment,

which provides access to different services working separately and often being

physically distributed, can’t be designed as single thread application. Standard and

suggested stages are integrated; new CASE-toolkit is being developed for high-quality

IS development in the shortest time. The main features of such toolkit is support of

prototyping, early testing, analysis, easy reengineering, computing processes in

distributed IS optimization and multithread computing in global environment

including wireless channels.

Introduction

Distributed information systems (IS) successful design while their development

defines the following development stages. A lot of projects, dealing with distributed

systems development and implementation fail because of the mistakes, made on

design stage.

The scientific work purpose

 Technologies and methods research, analysis and improvement, which are

the basis of CASE-tools;

 Efficiency increase of informational and computational resources

application in telecommunication environment by multithreading and

distributed computing application;

 Information system (IS) development and reengineering process

reorganization, which provides total efficiency increase of the information

system development and implementation;

 Prototyping, early testing, analysis, computing processes in distributed IS

optimization methods development and their realization in software toolkit.

While complex IS development, the business-process description and management,

workflow support and software components integration became the most important

and topical tasks to be solved [1]. For these purpose quite widespread and convenient

CASE-tools are used.

Nowadays it’s impossible to imagine modern IS development, implementation and

maintenance realized by one specific software tool. Great variety of functions

implementation for the system functioning requires a few software tools integration

into unified software toolkit. The suggested approach is oriented on network

88 L. Globa, T. Kot, D. Lysenko

distributed applications development. Advanced and complex IS realization make the

demand for new generation development and support toolkit.

The paper includes suggestions to integrated informational and computational

recourses toolkit concept [2] extension for its application in multithread systems [3].

The toolkit gives the possibility to design information system, efficiently working in

heterogeneous environment.

For IS general effectiveness increase parallel business processes execution is

implemented to IS functioning. It is realised by IS design as multithread one.

Toolkit includes designing tool FFD Designer [4], uses graphical components,

allowing system interface, functionality and parallel business process design.

Mathematical base of parallel business processes design, analysis and optimization is

graph model and finite state machine (FSM) theory mathematical apparatus.

The graph model is used for computational recourses running. It is based on a

dynamic forming the effective graph model. It is used while computing threads,

running in global heterogeneous environment.

There are some wellknown CASE-tools for distributed information system (IS)

designing. But the parallel executing processes while networking are not taken into

account by any of them. For realizing these processes some approaches were

suggested in this article.

The distributed information system works in telecommunication network, where

servers of computational and informational resources function in coordination [5].

Server of information resources includes databases, html, xml- pages and others.

Server of computational resources consists of applications and computing threads.

The methodology of distributed IS development bases on the main approaches

allowing step-by-step deployment of complex information systems. These approaches

are called S2I2 principles:

 simultaneity of system development, implementation and using under

conditions of contributive simultaneous work of all project participants:

both developers and users;

 standardization of all typical components of the IS informational

processes;

 integration as method of the separate components, subsystems and systems

organization into the system, which provides their coordinated and

purposeful interaction, and also supporting the system business processes

execution;

 intellectualization as method for computing of necessary analytical and

statistical data.

There are some modified stages of software development. The suggested approach

to software development lifecycle is shown on fig.1.

 Integrated Environment for Software Development and Analysis … 89

Distributed IS development requires 3 basic components working in global

environment:

 informational resources;

 computational resources;

 business-process scenario database.

The suggested toolkit includes tool “FFD Designer”, used for IS design and toolkit

“core”, used for IS business processes execution.

Toolkit “Core” development can be realized by following tasks fulfillment:

1. System design (business processes description) using forms and functions,

forms and functions diagram (FFD)

2. FFD translation to FSM

3. FSM functioning realization

4. Work with FSM

 Analysis

 Testing

 Optimization

5. Optimized FFD development, using optimized FSM translation to FFD

Forms and functions description

It is suggested to divide designed system in two levels: representation (interfaces)

level and functionality level, described by introduced objects [5]: forms and functions.

Such approach is the basis of early prototyping, testing and reengineering realization.

For analysis, testing, and optimization realization while IS development, the

mathematical apparatus of finite state machine (FSM) theory is suggested to apply. It

allows:

1. Having inputted any impact sequence to designed system enter, to get system

state after impact, for its analysis

2. To optimize designed system by finding bottleneck in system prototype and to

develop optimized prototype.

Form and Function Mathematical Models

There are two types of the functions: the executive function and the function-

prototype (dummy function).

The executive function - this is usual function. There is the executive function

mathematical model (1) and it structural model is shown on fig.2-b.

),...,,...,,,,(11 mnpfuncform yyxxEEEf ! , where (1)

formE is an activity point of form, the function is called by it.

It uniquely defines the form

funcE is the point of function activity, it belongs to the

function and transfers data to the another object (form or

function)

pE is the activity point of the external object (form of

function), the control is transferred to it after the current

90 L. Globa, T. Kot, D. Lysenko

function execution

nxx ,...,1 are the input function parameters and xi E X, - the

parameters admitted regions

myy ,...1 are output function parameters, and yi E Y, - the

parameters admitted regions.

Fig. 1. The suggested approach to software development lifecycle

The function-prototype (dummy function) is for interface testing (it has the same

function mathymatical model but it has no functionality). There is the function-

prototype mathematical model (2).

),...,,...,,,,(11 mnpfuncform

prot yyxxEEEf ! (2)

 Integrated Environment for Software Development and Analysis … 91

Function-prototypes are needed for whole IS project integrity verification. They are

being replaced by the real compiled functions, while IS step-by-step implementation.

Function-prototypes must satisfy the following requirements:

 to have the same activity points as executive function does:

pfuncform EEE ,,
;

 to control input parameters correspondence to tolerance range;

There is the form mathematical model (3) and it structural model is shown on fig.2-

b.

)),...,(),...,,...,(,(11111 NMNNN xxExxENF ! ,where
(3)

N - number of activity points;

NNN ,...,1 - the activity points;

Nxx 111 ,..., - the function input parameters 1 ,

XxiN " - parameters admitted regions.

All types of functions can be joined into the new structure called module (fig. 2 c).

Suggested graphic elements business-process design
For IS running in parallel mode some modifications were done in traditional

business-process model. Special graphic elements were added to the modified

business-process model, it’s shown on fig.3.

While business-processes description, the next parameters are considered:

 marks for the form formatting;

 input and output data format of form;

 “specified execution time”.

The ability if working with table, thread and other specified data (SQL requests,

date, time) is also considered.

The business-process diagram (fig.3) use the elements (fig.2) for business-process

running description in multithread mode.

The method of toolkit “core” realization and its functioning is discussed by using

the example diagram (pict.3).

The presented diagram of designed system includes four forms. User can

sequentially pass on forms F1 F2 F3 and also stop passing and return to initial system

state (F1) using F4, which is used for navigation.

In the discussed case, every transition on form entail corresponding function call.

Transition is realized as soon as form is handled or function is executed.

Transition between entry and exit points is presented by arrows. Every transition is

brought into accord with computing thread identifier (ID). Two special transition types

are represented on the diagram: computing thread beginning, represented with bold

arrow, computing thread end , represented with square. Two computing threads are

used in system example, , represented as 1 and 2, and every transition is brought into

accord with one of these threads.

92 L. Globa, T. Kot, D. Lysenko

Fig. 2. Additional graphic elements for modified business-process design

Fig. 3. Example diagram

Thus, two forms: F4 and on of the forms F1,F2 or F3 are represented on the user

screen. User has simultaneous access to these forms.

 Integrated Environment for Software Development and Analysis … 93

The represented diagram is divided in two ones, corresponding to threads 1 and 2

(pict.4, 5).

Fig. 4. Diagram with thread 1

Fig. 5. Diagram with thread 2

Diagram part, describing first thread functioning, is represented on pict.4. User’s

activities and function activities results are represented with small letters of Roman

alphabet.

FFD translation to FSM

Toolkit “core”, working with one computing thread is considered further.

Used forms and functions set is identified as Q = { q1, q2, …, qn,}. Possible user

impact on system and events, entailed by functions execution are identified as F = {

a1, a2, …, an,}.

It is evidently, that diagram specifies functions of transition set, according to

“core” mode and appeared impact, which is identified as G(qi,ai). Thus, the diagram,

working with one thread , can be represented by deterministic FSM (DFSM) [6], since

the following condition is fulfilled: at any number of input impacts to FSM, there can

be only one FSM state, which can appear, after FSM change its current state. The

FSM can be represented as

> = (Q, F, G, qs,F) (4)

where qs – form or function, corresponding to thread start, F – acceptable

FSM states set F = Q

Diagrams (pic.4, 5) are represented as FSMs (pic.6 and 7).

Input symbols for these FSMs are user actions and event, caused by functions

execution. FSM states are represented with circles, input impacts are represented with

arrows.

94 L. Globa, T. Kot, D. Lysenko

Fig. 6. DFSM

Fig. 7. DFSM 2

The impact, generated automatically, is indicated with letter H.

Considering core functioning with a few threads, its concept should be extended.

In this case, a few forms can be represented on the user’s screen, and core can

handle a few functions simultaneously. Thus, the function of transition can be

represented as

{qi} = U G(qi,ai), where qi I{ qj } (5)

Thus, forms and functions diagram can be represented as non-deterministic FSM

(NDFSM).

For joining a few deterministic FSM H- bridging is used.

H- bridging of state qi is H- NDFSM [6] states set, which can be got from qi via H-

transition chain. This set consists at least of one element qi. The function, which

argument is FSM state, and its value corresponds to H- bridging, is called eclose. It

can be defined as

eclose(qi) ={ qi } U {eclose(qi) if H-transition from qi to qj exists} (6)

FSM starts working when it has states set eclose(q0). When FSM has states set

{qi}, it changes this set to another one, got after all states H-bridging and joining sets

G(qi, a).

{qi}
next = U eclose(qj), where (7)

qj belongs to U G(qk, a), where qk belongs to { qk }
current

DFSM (pic. 6, 7) can be joined to one NDFSM ((i".8) by H-transitions.

 Integrated Environment for Software Development and Analysis … 95

Fig. 8. NDFSM

Hence, designed system can be represented with diagram, consisting with FSMs. It

allows

 to analyze system behavior at certain instants

 to optimize designed system by FSM minimization [6].

Developed diagram analysis requires input symbols generator, which can interact

with user and make a decision, concerning events, caused by functions execution.

FSM functioning realization

FSM analysis, testing, and optimization require FSM functioning algorithm

development and realization. Designed multithread system can be represented only by

NDFSM (pic.8). FSM functioning realization would be considered in the context of

NDFSM functioning realization.

NDFSM functioning by step-by-step pass

The NDFSM can be realized on deterministic computer: current states are kept,

when next input symbol is handled, every state is changed to corresponding set and

the results are joined.

Assuming, that sets joining is realized in constant time, independent of set size, the

operations number, needed for one symbol handling can be estimated as O(M), where

M is FSM states number. Usually, the complexity of sets joining linearly depends on

second set size. Since it can be estimated as O(M), the complexity of one symbol

handling is O(M2), and N-sized string handling complexity is O(N*M2).

H-transition handling can be realized by signal sending before data handling and

after H symbol handling, until states set stops changing. This stage can be optimized,

considering that set eclose(qi) is constant. It allows to find eclose(qi) value only one

time. This stage complexity is O(M2).

This way of NDFSM functioning realization requires a lot of computing resources.

It is used for complex designed systems analysis.

96 L. Globa, T. Kot, D. Lysenko

NDFSM functioning by its transformation to DFSM

May there is some NDFSM with three constants: q0, q1, q2. This NDFSM can stay

in any of the following states sets, independently of its internal structure:

 Ø (empty set)

 {q0}

 {q1}

 {q2}

 {q0, q1}

 {q0, q2}

 {q1, q2}

 {q0, q1, q2}

Summarizing features of NDFSM with any states number, DFSM can be defined as

qj
DFSM = {qi

NDFSM} (8)

Input symbols alphabet is equal to NDSFM one.

DFSM function of transition can be represented as

GDFSM(qj
DFSM, a) = U G NDFSM (qi

NDFSM, a), where qi
NDFSM belongs to qj

DFSM (9)

Primary DFSM state is the set, only consisting of NDFSM primary states.

q0
DFSM = {q0

NDFSM} (10)

The idea of NDFSM transformation to DFSM based on that subsets set of state

finite set is finite, i.e. independently of NDFSM behavior, it always stays in one of the

states finite set.

For H-NDFSM transition, (1) can be rewritten as
GNDFSM(qj

DFSM, a) = U eclose(qi
NDFSM), where (11)

qi
NDFSM belongs to U GNDFSM(qk

NDFSM, a)

qk
NDFSM belongs to qj

DFSM

 DFSM primary state is H-bridging of H-NDFSM primary state.
q0

DFSM = eclose(q0
NDFSM) (12)

Theoretical DFSM states number is estimated. If NDFSM has M states, then the

NDFSM states are all subsets of the set {q0, … qM-1}. Every qi
 can belong or not

belong to subset. Thus, there is 2M DFSM states.

There are two approaches to DFSM generation.

The first approach - all the required DFSM states are generated, connections

between them are fixed, then all unattainable states are removed. The second approach

- only attainable states are generated at first. The last approach is considered more

carefully.

Start is DFSM primary state eclose(q0). It is attainable by its definition. If the state

is attainable, than all the states, that can be changed to this one are also attainable. The

state qi can be changed to that states, which are G (qi, x), where G is the function of

DFSM transition, and x belongs to input symbols set. Having sorted out all input

symbols, the states (G (qi, x)) are got. The same principle is applied to all got states

while their generation.

 Integrated Environment for Software Development and Analysis … 97

Operation number linearly depends on DFSM states number, which doesn’t exceed

2M. This approach advantage is that after DFSM is generated, it handles any symbol in

constant instant, and N-length string – in O(N).

The first approach realization requires more computing operations (accordingly

more time) for one step computing and less main memory. When second approach

application, computing resources for one step computing have constant value.

Choice of NDFSM functioning realization way depends on:

 developed FSM complexity (designed system complexity)

 computing resources or main memory priority.

Conclusion

Suggested approach to design realization while IS development allows to raise:

 developed systems quality by early testing and optimization

realization;

 IS successful development probability by raising design stage quality;

 IS general efficiency, while its functioning in heterogeneous global

environment by implementing the toolkit, supporting parallel computing

threads execution.

Total efficiency increase of the information system development and

implementation by Information system (IS) development and reengineering process

reorganization.

REFERENCES

1. F.I. Andon Foundation of Software Systems Quality Engineering. – K.:

Akademperiodika, 2002. – 504 p.

2. L. Globa, A. Luntovskyy, D. Gütter, T. Kot CASE Tools for IT-System

Integration // Polish J. of Environ. Stud. Vol. 16, No. 5B (2007), 148-153

3. L. Globa, CASE Tools for Distributed IT-System Accounting Multithreading // 4.

Polish J. of Environ. Stud. Vol. 16, No. 5B (2007), 135-140

4. Globa L.S., Chekmez >. V., Kot T. N. Web-system interface prototype designing

// Crimico’06, Sevastopol, Ukraine

5. L.S. Globa, Prof., Dr.Sci.Tech, Approaches and technologies of creating data-

processing resources in the telecommunication environment, Electronics and

Communication, p.2, 2005, p.17-24-29.

6. M.V. Mozgovoy, Programming Classic: algorithms, languages, state machines,

compilers. Practical approach. – SPb: Nauka i Technika, 2006. – 320 p.

J'7!;K.' 24.09.2008.

