
 Вісник Харківського національного університету №863, 2009 5 

УДК 519.6  
 

Parallel Fast Fourier Transform Algorithms Applications  

for Telecommunications  

M. O. Alieksieiev  
National Technical University of Ukraine “KPI”, Ukraine 

The article is dedicated to analysis of computationally efficient and energy saving 

algorithms based on Fast Fourier Transform parallel implementation in wireless 

telecommunications where a customer’s terminals must possess such important 

qualities as little size and long operating time using one battery without recharging. 

Keywords: computationally efficiency, energy saving algorithms, Fast Fourier Transform, 

parallel implementation, wireless telecommunications, operating time. 

Стаття присвячена аналізу ефективних в обчислювальнім відношенні й 

енергозберігаючих алгоритмів, заснованих на швидкому перетворенні Фур'є, з 

точки зору їхньої реалізації для паралельного виконання в безпровідних 

телекомунікаціях, де термінали клієнтів повинні мати невеликий розмір і 

тривалий час автономної роботи від акумулятора без перезарядження. 

Ключові слова: обчислювальна ефективність, енергозберігаючі алгоритми, Фур'є швидке 
перетворення, паралельна реалізація, безпровідні телекомунікації, час роботи. 

Статья посвящена анализу эффективных в вычислительном отношении и 

энергосберегающих алгоритмов, основанных на быстром преобразовании Фурье, 

с точки зрения их реализации для параллельного выполнения в беспроводных 

телекоммуникациях, где терминалы клиентов должны иметь небольшой размер 

и длительное время автономной работы от аккумулятора без перезарядки. 

Ключевые слова: численная эффективность, энергосберегающие алгоритмы, Фурье 

быстрое преобразование, параллелизм, беспроводные телекоммуникации, время работы. 

1. Introduction 

Rapid progress of telecommunication technologies has caused that user’s demands 

and required speeds for data transmission have dramatically increased, thus leading to 

necessity of designing new approaches to implementing these systems into life. Being 

a modern trend in science, parallel computing is widely used in many applications, 

such as OFDM technology (used in ADSL, VDSL, IEEE 802.11a/g, DVB terrestrial 

digital TV systems DVB-T, DVB-H, T-DMB and ISDB-T etc, where parallel 

implementation of FFT is required). The market provides the telecommunications 

industry with dedicated FFT chips. For instance, on September 26th, 2003 SiWorks 

Inc., a provider of semiconductor design services and semiconductor intellectual 

property, announced that high throughput parallel FFT core for the emerging 

802.15.3a multi-band OFDM UWB standard has been developed.  

However, among all the conventional serial FFT algorithms, which used to be and 

continue being popular, the choice of parallel ones is very limited. In applications such 

as the pseudospectral methods for solving partial differential equations (PDE's), a 

number of multidimensional FFT's are computed per time step. The speed of the FFT 

computation is therefore very critical to any large application using the pseudospectral 

method. Since such very large computations are feasible mostly on only parallel 

machines, there is a need for fast multidimensional FFT algorithms for parallel 

machines. 

 

 



6 M. O. Alieksieiev  

2. Approaches to computing multidimensional FFT 

The approach to computing multidimensional FFT's on parallel machines is 

currently under debate. There are two possible methods. One of the approaches is the 

“Transpose Method”. In this method, data are divided by planes between nodes. For 

example, in the three dimensional transform, each node has a number of planes on 

which it computes two dimensional FFT's. Next, a distributed transpose rearranges the 

data in such a way that the FFT along the third dimension can be computed locally. 

This method is fairly easy and has been implemented for a number of applications.  

The second approach is to design a distributed FFT algorithm which operates 

without collecting planes or rows on a single node. Here the internode 

communications are interspersed with the computation at different stages of the FFT. 

This algorithm is more difficult to design and implement since the parallelization is an 

integral part of the algorithm. It gives a clear advantage of flexibilty in data 

distribution, since parallelization is possible along more than one dimension [1]. 

For example, following approach was proposed [2] for the design of parallel FFT: 

1. Designing a parallel radix 4 FFT algorithm for 16, 64, 256 and 1024 points. 

2. Using a Canonic Signed Digit (CSD) representation for the multiplication 

coefficients. 

3. Pipelining after each butterfly of the FFT algorithm. 

4. Fixed point arithmetic with a variable precision, set by design parameters. 

Floating point arithmetic was sacrificed for reasons of speed and complexity. 

And the main problems were complexity and speed of the chip, noise introduced by 

truncation errors in the fixed-point arithmetic also. 

The described [1] algorithm can compute FFT in one, two or three dimensions for 

different blocksizes along different directions. The data could be parallel along one or 

more dimensions in any combination. A real-to complex FFT (RFFT) can be 

computed as a special case of this algorithm, where at least one dimension is non 

parallel. The non parallel dimension of the RFFT is computed within the node, and the 

computations for the remaining dimensions are similar to those in the CFFT 

algorithm.  

The domain decomposition for this version is column wise; a domain consists of a 

three dimensional column of size zzyyx PNPNN // ×× , where zyx NNN ××  is the 

global data size and zy PP /   is the processor grid. An example is shown in Figure 1 

with a problem size of 888 ××  on a 22×  processor grid.  

The following outline describes an efficient parallel implementation of the FFT 

algorithm:  

1. Chose processor grid such that Py is minimum possible.  

2. Compute real to complex FFT along x.  

3. Do a distributed transpose between x and y such that y becomes local 

and x is distributed on Py processors.  

4. Compute complex to complex FFT along y.  

5. Do a distributed transpose between y and z such that z is local and y is 

distributed on Pz processors.  

6. Compute complex to complex FFT along z. 

7. Do the reverse transposes and restore the data distribution. 



 Вісник Харківського національного університету №863, 2009 7 

Moreover, the distributed FFT was presented in [1]. It has two kernels: one for 

computations and one for communications. The computation kernel is used in each 

stage of the FFT calculation while the communication kernel is used only in the stages 

which require offnode data. Both the kernels are common to all nodes. This form of 

organization has the advantages of modularity and uniformity. It dissociates the 

housekeeping complexity of the algorithm from the two most time consuming aspects 

of it, thus simplifying optimization and performance analysis of the algorithm. This 

algorithm has been implemented on IBM SP1 housed Argonne National Laboratory. 

 
Fig. 1. Column-wise domain decomposition for 4 Processors. 

 

4. FFT algorithms in Network-on-chip environment 

Due to rapid development of a System-on-Chip (SoC) concept a special approach 

to designing efficient FFT algorithms for Network-on-chip Communication subsystem 

is required. In [5] three different parallel FFT algorithms are presented. There are 

three main steps to be performed running the algorithms: 

− preprocessing (data is rearranged in bit-reverse order and divided by p blocks) 

− actual transformation (transform is executed further decomposition into 

sequential execution and parallel execution  can be performed  

− post processing. 

The proposed algorithms maximize the data parallelism as well as minimize the 

communication overhead resulting in higher performance in multiprocessor SoC. 

Not going deep into the principles of the aforementioned algorithms, I would like to 

confine myself to presenting the simulation results from [5]. The speed comparison of 

the three methods is given below.  

As the number of points in FFT, N increases, the speedup ratio reaches the number 

of processing elements. As it can be seen on the graphs methods 2 and 3 show higher 

speed in comparison with the first method. 

The proposed algorithms show the improvement over the existing parallel 

algorithms for the following reasons:  

− the resources are used in a balanced manner so that the divided task for each 

processing element finishes in shorter time 

− the data locality is also well utilized to minimize the communication load 

− the concurrency of communication and computation in Network-on-Chip 

environment can hide communication overhead. 



8 M. O. Alieksieiev  

 

 
Fig. 2. Method one. [5]. 

 

 

 

 
Fig. 3. Method two. [5]. 

 



 Вісник Харківського національного університету №863, 2009 9 

 
 Fig. 4 Method 3. [5] 

 

5. Parallel FFT Algorithm on Multiprocessors with Cache Technology 

As far as multiprocessor system is widely used, it is reasonable to consider a high-

performance parallel FFT algorithm which efficiently works in a multiprocessor 

environment. In [4, P. 105]  an interesting concept of such an algorithm is presented. 

The main idea is to use the intrinsic property of FFT parallelism for a parallel 

algorithm. In addition, the role of cache is also considered.  

In figure 4 the FFT computation parallelism property can be observed. 

 

 
 

Fig. 5. FFT computation parallelism property [4]. 

 

Below in the figure 6 the simulation results from [4, P. 105] are given. The 

proposed FFT method is compared with 2 conventional DSP  methods (TS101 and 

C6701).  

 



10 M. O. Alieksieiev  

 
 

Fig. 6. FFT Methods comparison. [4] 

 

It can be observed that the proposed algorithms outperforms its rivals in terms of 

speed and productivity. 

 

6. Mapping Parallel FFT Algorithm onto SmartCell Coarse-Grained 

Reconfigurable Architecture 

Authors in [8, P. 231-234] argue that instead of using the aforementioned 

algorithms mapping parallel FFT Algorithm onto SmartCell device can be used. It is 

claimed that this approach allows to outperform NoC concept (namely, it is 2.7 times 

faster). 

Energy consumption is also the problem to be considered. In figure 7 it is shown 

how the suggested novel approach outperforms the FPGA concept.  

 

 
Fig. 7. Energy consumption comparison between SmartCell and FPGA. Taken from [5]. 



 Вісник Харківського національного університету №863, 2009 11 

7. Partial FFT 

Instead of processing all the input data partial use of the given data can be 

considered. In [7, P. 1604-1615], for instance, pruning the useless data flow is 

suggested, so that a significant speed up can be achieved. This concept is especially 

relevant for streaming applications.  

A simple example of data flow graph in Partial FFT is depicted in fig. 8.  

 

 
 

Fig. 8.  A simple example of data flow graph 

 

Simple example of data flow graph in PFFT. 17 out of 128 output bins are used.  

The corresponding FFT is a standard 128-point radix-2 Cooley–Tukey decimation-in-

time variant. Taken from [7, P. 1604]. 

 

8. Conclusions 

Provided analysis shows that there are a lot of technologies in telecommunications 

that use FFT as a key point. Which particular algorithm to use depends on the system 

developer. However, it is clear that usage of multi-core processors is extremely 

efficient due to high performance of the parallel computations and due to its energy-

saving characteristic. However the results of the analysis are such that there is no 

unanimous approach to parallel FFT implementation. Thus its development is very 

challenging especially in terms of further implementation in future 

telecommunications systems. 

 

REFERENCES 

 

1. Dubey, A.; Clune, T. Optimization of a parallel pseudospectral MHD code. 

Frontiers of Massively Parallel Computation, 1999. Frontiers apos;99. The 

Seventh Symposium on the Volume , Issue , 21-25 Feb 1999 Page(s):208 – 212. 

2. Roland Weigand. Design of a parallel FFT processor using fixed point arithmetic 

and СSD-Multiplication. - ESA/ESTEC, XRM Section, 1995, Pages: 132 – 136. 



12 M. O. Alieksieiev  

3. Strong, David M.; Magee, Eric P.; Lamont, Gary B. Implementation and test of 

wave optics code using parallel FFT algorithms. - Air Force Institute of 

Technology, 2001, Pages: 344-351. 

4. Jun Tan, Xingshu Chen, Long Xiao. An Optimized Parallel FFT Algorithm on 

Multiprocessors with Cache Technology in Linux.. 2008 International Symposium 

on Computer Science and Computational Technology, Pages: 105-109. 

5. Jun Ho Bahn, Jungsook Yang and Nader Bagherzadeh Parallel FFT Algorithms on 

Network-on-Chips. Fifth International Conference on Information Technology: 

New Generations, Pages: 1087-1093. 

6. P. Dmitruk, L.-P. Wang, W.H. Matthaeus, R.Zhang, D. Seckel. Scalable Parallel 

FFT for spectral simulations on a Beowulf cluster. Parallel Computing, #27, 

Pages: 1921-1936. 

7. Min Li, David Novo, Bruno Bougard, Member, IEEE, Trevor Carlson, Liesbet 

Van Der Perre, Member, IEEE, and Francky Catthoor, Fellow, IEEE. Generic 

Multiphase Software Pipelined Partial FFT on Instruction Level Parallel 

Architectures. - IEEE Transactions On Signal Processing, Vol. 57, No. 4, April 

2009, Pages: 1604-1615. 

8. Cao Liang and Xinming Huang. Mapping Parallel FFT Algorithm onto SmartCell 

Coarse-Grained Reconfigurable Architecture. 2009 20th IEEE International 

Conference on Application-specific Systems, Architectures and Processors, 

Pages: 231-234. 

 

 
 

Надійшла у першій редакції 01.04.2009, в останній – 31.10.2009. 

 

© Alieksieiev  M. O., 2009 


