BicHuk XapkiBcbkoro HauioHanbHoro yHisepcuteTy Ne863, 2009 5

YIK 519.6

Parallel Fast Fourier Transform Algorithms Applications
for Telecommunications

M. O. Alieksieiev
National Technical University of Ukraine “KPI”, Ukraine

The article is dedicated to analysis of computationally efficient and energy saving
algorithms based on Fast Fourier Transform parallel implementation in wireless
telecommunications where a customer’s terminals must possess such important
qualities as little size and long operating time using one battery without recharging.

Keywords: computationally efficiency, energy saving algorithms, Fast Fourier Transform,
parallel implementation, wireless telecommunications, operating time.

CraTTs mnpUCBAYCHAa aHami3y e(QEeKTHMBHMX B OOUYMCIIOBANBHIM BiHOIICHHI if
eHepro30epiraroynx alropuTMiB, 3aCHOBAHHX Ha IIBHAKOMY HepeTBopeHHi Dyp'e, 3
TOYKM 30py iXHBOi peamizamil s MapajeilbHOTO BHUKOHAHHS B OE3MPOBIIHHX
TEJIEKOMYHIKAIlIAX, J¢ TEePMIiHAIM KII€HTIB MOBHHHI MaTH HEBEIMKHHA pO3MIp i
TPUBAJIMI Yac aBTOHOMHOI poOOTH BiJ akyMyJaTopa 0e3 mepe3apsiPKeHHsL.

Kniouosi cnosa: odouuciosanvra edpekmusHicms, eHepeozoepicaroi arcopummu, Pyp'e wsuoxe
nepemeopeHHs, napaieivbHa peanizayis, 6e3npoeioni meaeKomyHikayii, yac pooomu.

Cratbs IOCBALICHA aHAIU3y 3(1)(1)€KTI/IBHBIX B BBIYHUCIWTCIIBHOM OTHOIICHHU U
9HEprocOeperaroIux aaropuTMOB, OCHOBaHHEIX Ha OBICTpOM IpeobpazoBanuu Pypee,
C TOYKHM 3pC€HHA UX pCalM3alluy JId MapaiyiCIbHOI'O BBIIIOJHECHUSA B 66CHpOBO}1HbIX
TCICKOMMYHUKAUAX, I'IC TCPMUHAJIBI KIIMEHTOB HOJIKHBI UMEThH HEOO0IBIIION pasMep
¥ JUTATEIIBHOE BPEMST aBTOHOMHOM pabOThI OT aKKyMYyJIATOpa 0€3 mepe3apsaK.
Kniwoueevte cnosa: uuciennas s@gexmugrnocms, suepeocoepezarouue ancopummsl, DPypve
bvicmpoe npeobpazosanue, Napaiienu3m, 6ecnpogooHvle MeNeKOMMYHUKAYUU, BDEMSL padOMmbL.

1. Introduction

Rapid progress of telecommunication technologies has caused that user’s demands
and required speeds for data transmission have dramatically increased, thus leading to
necessity of designing new approaches to implementing these systems into life. Being
a modern trend in science, parallel computing is widely used in many applications,
such as OFDM technology (used in ADSL, VDSL, IEEE 802.11a/g, DVB terrestrial
digital TV systems DVB-T, DVB-H, T-DMB and ISDB-T etc, where parallel
implementation of FFT is required). The market provides the telecommunications
industry with dedicated FFT chips. For instance, on September 26th, 2003 SiWorks
Inc., a provider of semiconductor design services and semiconductor intellectual
property, announced that high throughput parallel FFT core for the emerging
802.15.3a multi-band OFDM UWRB standard has been developed.

However, among all the conventional serial FFT algorithms, which used to be and
continue being popular, the choice of parallel ones is very limited. In applications such
as the pseudospectral methods for solving partial differential equations (PDE's), a
number of multidimensional FFT's are computed per time step. The speed of the FFT
computation is therefore very critical to any large application using the pseudospectral
method. Since such very large computations are feasible mostly on only parallel
machines, there is a need for fast multidimensional FFT algorithms for parallel
machines.

6 M. O. Alieksieiev

2. Approaches to computing multidimensional FFT

The approach to computing multidimensional FFT's on parallel machines is
currently under debate. There are two possible methods. One of the approaches is the
“Transpose Method”. In this method, data are divided by planes between nodes. For
example, in the three dimensional transform, each node has a number of planes on
which it computes two dimensional FFT's. Next, a distributed transpose rearranges the
data in such a way that the FFT along the third dimension can be computed locally.
This method is fairly easy and has been implemented for a number of applications.

The second approach is to design a distributed FFT algorithm which operates
without collecting planes or rows on a single node. Here the internode
communications are interspersed with the computation at different stages of the FFT.
This algorithm is more difficult to design and implement since the parallelization is an
integral part of the algorithm. It gives a clear advantage of flexibilty in data
distribution, since parallelization is possible along more than one dimension [1].

For example, following approach was proposed [2] for the design of parallel FFT:

1. Designing a parallel radix 4 FFT algorithm for 16, 64, 256 and 1024 points.

2. Using a Canonic Signed Digit (CSD) representation for the multiplication
coefficients.

3. Pipelining after each butterfly of the FFT algorithm.

4. Fixed point arithmetic with a variable precision, set by design parameters.
Floating point arithmetic was sacrificed for reasons of speed and complexity.

And the main problems were complexity and speed of the chip, noise introduced by
truncation errors in the fixed-point arithmetic also.

The described [1] algorithm can compute FFT in one, two or three dimensions for
different blocksizes along different directions. The data could be parallel along one or
more dimensions in any combination. A real-to complex FFT (RFFT) can be
computed as a special case of this algorithm, where at least one dimension is non
parallel. The non parallel dimension of the RFFT is computed within the node, and the
computations for the remaining dimensions are similar to those in the CFFT
algorithm.

The domain decomposition for this version is column wise; a domain consists of a
three dimensional column of size N, x N, /P, x N_/P_, where N, x N, x N_ is the

global data size and P, / P, is the processor grid. An example is shown in Figure 1

with a problem size of 8 x8x 8 ona 2x2 processor grid.
The following outline describes an efficient parallel implementation of the FFT
algorithm:
1. Chose processor grid such that Py is minimum possible.
2. Compute real to complex FFT along x.
3. Do a distributed transpose between x and y such that y becomes local
and x is distributed on Py processors.
4. Compute complex to complex FFT along y.

5. Do a distributed transpose between y and z such that z is local and y is
distributed on Pz processors.
6. Compute complex to complex FFT along z.

7. Do the reverse transposes and restore the data distribution.

BicHuk XapkiBcbkoro HauioHanbHoro yHisepcuteTy Ne863, 2009 7

Moreover, the distributed FFT was presented in [1]. It has two kernels: one for
computations and one for communications. The computation kernel is used in each
stage of the FFT calculation while the communication kernel is used only in the stages
which require offnode data. Both the kernels are common to all nodes. This form of
organization has the advantages of modularity and uniformity. It dissociates the
housekeeping complexity of the algorithm from the two most time consuming aspects
of it, thus simplifying optimization and performance analysis of the algorithm. This
algorithm has been implemented on IBM SP1 housed Argonne National Laboratory.

g g
4/ Bo 4/ B,

: °f Nl
. k.
[/PGO / PDIL
0 ok
— o
3 8
8 g ¥
e B -~
0 3 4 8

Fig. 1. Column-wise domain decomposition for 4 Processors.

4. FFT algorithms in Network-on-chip environment

Due to rapid development of a System-on-Chip (SoC) concept a special approach
to designing efficient FFT algorithms for Network-on-chip Communication subsystem
is required. In [5] three different parallel FFT algorithms are presented. There are
three main steps to be performed running the algorithms:

— preprocessing (data is rearranged in bit-reverse order and divided by p blocks)

— actual transformation (transform is executed further decomposition into

sequential execution and parallel execution can be performed

— post processing.

The proposed algorithms maximize the data parallelism as well as minimize the
communication overhead resulting in higher performance in multiprocessor SoC.

Not going deep into the principles of the aforementioned algorithms, I would like to
confine myself to presenting the simulation results from [5]. The speed comparison of
the three methods is given below.

As the number of points in FFT, N increases, the speedup ratio reaches the number
of processing elements. As it can be seen on the graphs methods 2 and 3 show higher
speed in comparison with the first method.

The proposed algorithms show the improvement over the existing parallel
algorithms for the following reasons:

— the resources are used in a balanced manner so that the divided task for each

processing element finishes in shorter time

— the data locality is also well utilized to minimize the communication load

— the concurrency of communication and computation in Network-on-Chip

environment can hide communication overhead.

M. O. Alieksieiev

3zpt Bept 128pt Si2pt 1024pt 2043pt 4056-pt B192pt 16384-pt 32TEA-pt
Fzg. 2. Method one. [5].

Izt GApt 1ZBpt DSSpt 512pl 10Zdpt 20d8.p1 4096l B1GZpt 1B3Bdpl 327EEpl
Fig. 3. Method two. [5].

BicHuk XapkiBcbkoro HauioHanbHoro yHisepeuteTy Ned63, 2009 9

gt Bdepl 128t 256pt 512t I024ept 2048-pt 4096t B192pt 1G3Bpt I2TEE-p
Fig. 4 Method 3. [5]

5. Parallel FFT Algorithm on Multiprocessors with Cache Technology

As far as multiprocessor system is widely used, it is reasonable to consider a high-
performance parallel FFT algorithm which efficiently works in a multiprocessor
environment. In [4, P. 105] an interesting concept of such an algorithm is presented.
The main idea is to use the intrinsic property of FFT parallelism for a parallel
algorithm. In addition, the role of cache is also considered.

In figure 4 the FFT computation parallelism property can be observed.

s €l o™ 03) b
e = = 1
o ~ s 4 y By
b s .
Wy i x A
B 0] o bl 8] “'_' i [e e, =41 hﬂ
. M 5 e 1 17
B |_] "'\. [-\: ; ", .-:‘"" : i B bﬂ
P){,«:x .
CPR B o O 0 i by
_ M - L]
g L0 ._.-"!"I") .- L .-\:____j_ i bg
By 0 & " g B § bﬂ
e i
By L - g O el 1 by

Fig. 5. FFT computation parallelism property [4].

Below in the figure 6 the simulation results from [4, P. 105] are given. The
proposed FFT method is compared with 2 conventional DSP methods (TS101 and
C6701).

10 M. O. Alieksieiev

LRI

—— i

S L

— 4 TH1
—— 570

Lt

(R

Fig. 6. FFT Methods comparison. [4]

It can be observed that the proposed algorithms outperforms its rivals in terms of

speed and productivity.

6. Mapping Parallel FFT Algorithm onto SmartCell Coarse-Grained

Reconfigurable Architecture

Authors in [8, P. 231-234] argue that instead of using the aforementioned
algorithms mapping parallel FFT Algorithm onto SmartCell device can be used. It is
claimed that this approach allows to outperform NoC concept (namely, it is 2.7 times

faster).

Energy consumption is also the problem to be considered. In figure 7 it is shown

how the suggested novel approach outperforms the FPGA concept.

12000

1
[—]smartCell

[Xilinx Virtex!l Pro FPGA

10000

ool b

2000 - -nrn E PR

Energy Efficiency for One Data Block{uJ/Block)

sooo k- - - -L t

T e —— — T S—

§4-pt 128-pt

256~pt §12-pt
Fig. 7. Energy consumption comparison between SmartCell and FPGA. Taken from [5].

1024-pt

BicHuk XapkiBcbkoro HauioHansHoro yHiBepcuteTy Ne863, 2009 11

7. Partial FFT

Instead of processing all the input data partial use of the given data can be
considered. In [7, P. 1604-1615], for instance, pruning the useless data flow is
suggested, so that a significant speed up can be achieved. This concept is especially
relevant for streaming applications.

A simple example of data flow graph in Partial FFT is depicted in fig. 8.

Fig. 8. A simple example of data flow graph

Simple example of data flow graph in PFFT. 17 out of 128 output bins are used.
The corresponding FFT is a standard 128-point radix-2 Cooley—Tukey decimation-in-
time variant. Taken from [7, P. 1604].

8. Conclusions

Provided analysis shows that there are a lot of technologies in telecommunications
that use FFT as a key point. Which particular algorithm to use depends on the system
developer. However, it is clear that usage of multi-core processors is extremely
efficient due to high performance of the parallel computations and due to its energy-
saving characteristic. However the results of the analysis are such that there is no
unanimous approach to parallel FFT implementation. Thus its development is very
challenging especially in terms of further implementation in future
telecommunications systems.

REFERENCES

1. Dubey, A.; Clune, T. Optimization of a parallel pseudospectral MHD code.
Frontiers of Massively Parallel Computation, 1999. Frontiers apos;99. The
Seventh Symposium on the Volume , Issue , 21-25 Feb 1999 Page(s):208 — 212.

2. Roland Weigand. Design of a parallel FFT processor using fixed point arithmetic
and CSD-Multiplication. - ESA/ESTEC, XRM Section, 1995, Pages: 132 — 136.

12

M. O. Alieksieiev

Strong, David M.; Magee, Eric P.; Lamont, Gary B. Implementation and test of
wave optics code using parallel FFT algorithms. - Air Force Institute of
Technology, 2001, Pages: 344-351.

Jun Tan, Xingshu Chen, Long Xiao. An Optimized Parallel FFT Algorithm on
Multiprocessors with Cache Technology in Linux.. 2008 International Symposium
on Computer Science and Computational Technology, Pages: 105-109.

Jun Ho Bahn, Jungsook Yang and Nader Bagherzadeh Parallel FFT Algorithms on
Network-on-Chips. Fifth International Conference on Information Technology:
New Generations, Pages: 1087-1093.

P. Dmitruk, L.-P. Wang, W.H. Matthaeus, R.Zhang, D. Seckel. Scalable Parallel
FFT for spectral simulations on a Beowulf cluster. Parallel Computing, #27,
Pages: 1921-1936.

Min Li, David Novo, Bruno Bougard, Member, IEEE, Trevor Carlson, Liesbet
Van Der Perre, Member, IEEE, and Francky Catthoor, Fellow, IEEE. Generic
Multiphase Software Pipelined Partial FFT on Instruction Level Parallel
Architectures. - IEEE Transactions On Signal Processing, Vol. 57, No. 4, April
2009, Pages: 1604-1615.

Cao Liang and Xinming Huang. Mapping Parallel FFT Algorithm onto SmartCell
Coarse-Grained Reconfigurable Architecture. 2009 20th IEEE International
Conference on Application-specific Systems, Architectures and Processors,
Pages: 231-234.

Hagiiwna y nepwin pegakyii 01.04.2009, B octanHin — 31.10.2009.

© Alieksieiev M. O., 2009

