
 Вісник Харківського національного університету №890, 2010 145

УДК 004.41,004.51

APS and Tools
A. Letichevsky, A. Letichevsky (jr), V. Peschanenko

Glushkov Institute of Cybernetics NAS Ukraine, Ukraine
Research Institute of Information Technologies, Kherson State University

This article is devoted to comparison of functional possibilities and efficiency of the
most widespread systems of terms rewriting and the system of algebraic programming
APS. Also the article describes the new APS tools, intended for writing of C++ code
as per APS prototype.
Key words: functionality, systems of terms rewriting, algebraic programming, prototype,
software tools.

У статті описані основні відмінності функціональних можливостей та
ефективності найбільш розповсюджених систем переписування термів та
системи алгебраїчного програмування APS. Також розглянуто основні засоби
розробки програм в системі APS за його прототипом.
Ключові слова: функціональність, система переписування термів, алгебраїчного
програмування, прототип, засоби розробки програм.

В статье описаны основные отличия функциональных возможностей и
эффективности наиболее известных систем переписывания термов и системы
алгебраического программирования APS. Также рассмотрены основные
инструменты разработки программ APS по ее прототипу.
Ключевые слова: функциональность, система переписывания термов, алгебраическое
программирование, прототип, инструменты разработки программ.

1. Introduction
APS - is the system of algebraic programming that has been developed in the mid-

eighties in departments of the Glushkov Institute of Cybernetics of the National
Academy of Sciences of Ukraine [1]. Historically, АPS is the first system which has
started to use the technology of term rewriting in combination with user’s defined
strategies of rewriting. APS is the system which supports a run-time self-modification
(these are possibilities that make APS more useful for different kinds of algorithms).

The reason of its week distribution was unstable economic situation in Ukraine and
a number of deficiencies in the first versions of APS (memory leaks and a
sluggishness of interpreter of APS). At this time the closest analogs of APS started to
appear, such as: Stratego [2], Maude [3], Elan [4]. As a result the APS has been
forgotten and the majority of designers use now other systems of terms rewriting.

Now the company LitSoft [4] is the official distributor of the algebraic
programming system APS. It is possible to find all necessary information about the
APS system on the site of this company. Also on the site it is possible to receive the
free version of the present system (the binary files for Windows and Unix operating
systems) along with the examples, which are carefully selected by the authors.
Besides, on this site it is possible to try online working of the system, i.e. it is possible
to write APLAN (language of APS system) code and to launch its applications in the
Internet.

So, article is devoted comparison of functionality of known rewriting term systems
with APS system.

146 A. Letichevsky, A. Letichevsky (jr), V. Peschanenko

2. Functional possibilities of rewriting term systems
Let’s demonstrate the functional possibilities of each system (see Table 1). It is

clear from the table that APS doesn’t concede to well-known systems of terms
rewriting as per all criterions.

Table 1. Functionalities of rewriting term systems
N

o

N
am

e

St
ra

te
gi

es
 N

um
be

r
N

on
e

T
yp

in
g

St
ra

te
gi

es
 a

nd
 r

ul
es

Pr

oc
ed

ur
al

L

an
gu

ag
e

Po
ss

ib
ili

tie
s o

f
L

an
gu

ag
e

E
xt

en
si

on

U
se

r
M

an
ua

l
Pu

bl
ic

at
io

n
C

on
ne

ct
io

n
to

 th
e

E
xt

er
na

l M
od

ul
es

C
om

pi
la

tio
n

D
yn

am
ic

al
 C

re
at

io
n

of
 th

e
Sy

st
em

 o
f t

he

R
ew

ri
tin

g
R

ul
es

Su

pp
or

t

A
pp

lic
at

io
n

A
re

a

C
om

m
er

ci
al

Pr

od
uc

ts

C
ou

nt
ry

1

EL
A

N

ar
bi

tra
ry

 - - +

19
92

 - +,- - + *

Fr
an

ce

2

ST
R

A
TE

G
O

ar
bi

tra
ry

 + - -

19
94

 - +,- + - transformation systems including
compilers, interpreters, static
analyzers, domain-specific
optimizers, code generators,
source code refactorers,
documentation generators, and
document transformers.

*

N
et

he
rla

nd
s

3

M
A

U
D

E 7 + - -

19
95

 - +,- - + General Logics and Logical
Frameworks, Specification
Languages, Declarative
Programming Languages,
Semantics of Programming
Languages and Models of
Computation, Concurrent and
Distributed Systems, Formal
Tools and Formal
Interoperability, Reflection and
Metaprogramming, Object-
Oriented Modeling and
Programming, Real-Time
Systems, Bio Informatics, Mobile
Languages, Network Protocols
and Active Networks

*

U
SA

4

A
PS

ar
bi

tra
ry

 + + +

19
87

 ** **
*

+ + Algebraic programming,
Insertional modeling, program
transformation, General Logics
and Logical Frameworks,
Specification Languages,
Declarative Programming

VRS
(Verifica-
tion of
Require-
ment
Specifica-
tion),
TERM(
School
System of
Computer
Algebra)

U
kr

ai
ne

* - Can’t find any information about concrete projects.
** - To the binary files and system commands.
*** - C – version of the arbitrary paths of program.

 Вісник Харківського національного університету №890, 2010 147

+,- means that the system supports compilation of some small sub-set of system’s
language.

Let’s compare the capacity of terms rewriting systems taking the example of

finding of n – number of Fibonacci (in this case we are interested in total operation
time of the program which is used for rewriting only).

We are going to perform test on DELL VOSTRO 1500 (CPU Intel Core duo 2.0,
Memory 2 Gb, HDD 160 Gb). The results of launching of this program in different
systems of term rewriting are presented in table 2.

Without doubts due to quite developed typification in the system, MAUDE has
more benefits than other systems (the process of evaluation with integers numbers
doesn’t use some additional structures etc). In this connection, there is a quite limited
number of rewriting strategies in the system that considerably complicates the
algorithms realized in it.

Тable 2. The results of launching of algorithms finding of Fibonacci n-number.
№ System names Fibonacci number (in seconds)

15 20 21 22 23 24
1 Interpreter of ELAN 0 2 6 11.5 18.5 28
2 Interpreter of Stratego 0 3 7 12 21 34
3 Interpreter of MAUDE 0.004 0.04 0.068 0.072 0.104 0.236
4 Procedures of APS 0 1 1 3 4 7
5 Rewriting systems of APS 0 2 2 4 6 10

From the other side, APS was considered to be one of the slowest systems of term

rewriting. Talking into consideration the results of capacity of rewriting, it can be said
that APS is quite quick system of term rewriting (after the elimination of some
deficiencies). Surely, it doesn’t have compiler, but instead of it we propose a number
of tools for convenience of programming in APLAN as well as in C++. These tools
take APS to the new more qualified level (the compilers of ELAN, MAUDE, Stratego
don’t support language possibilities completely).

Let's examine in details the mentioned above deficiencies of APS system. The first
version of APS system had the memory leaks. The "garb" operator for collection of
waste in the program was realized in APS system but as practice proved this operator
didn’t delete memory completely. In a course of analysis of the source code the
designers discovered places of memory leaks. It was precipitated out 7 bytes of
memory at the procedure calling, described in APLAN language. However, the actual
C++ code which performs the calling of these procedures does not contain obvious
calling functions of memory selection. It led to the fact that the used memory
increased very fast at execution of the program and some small instances simply were
terminated due to lack of memory in computer. As a result we have taken the
following decision-to implement the technology Smart Pointers in APS [6]. Thus, by
means of this technology in the second version of APS system it was possible to be
saved of this deficiency.

In the course of analysis of the source code of APS system and the experience of its
usage we have come to the important conclusion - the slowest part of APS is the
rewriting interpreter of APLAN language. This is a quite appropriate conclusion, as
the APS supports the ideology of self-variation of the program written in APLAN
language during program interpreting. As the interpreter of rewriting machine is
written in C ++, the functions of rewriting machine shall work fast - system of

148 A. Letichevsky, A. Letichevsky (jr), V. Peschanenko

rewriting rules with strategies will translate in C++ procedures, interpreter of rewriting
machine will be optimized.

3. APS Tools
Application development process in APS passes the following stages: prototype

development in APLAN language, analysis of this prototype and realization of the
final version in C++. Therefore having saved of memory leaks in the system, we have
prepared it for industrial usage. For industrial usage of APS system we have created a
set of tools for reduction of terms of transference from the prototype of the program to
its final version the usage of which together with APS system is going to reduce
considerably the software development terms.

The tools of APS include:
1. The Language APLANC (Algebraic Programming Language C++).
2. The converter from APLAN language to APLANC language.

The Language APLANC represents a set of functions being realized in C++ which
help working with internal structures of APS, as well as to realize the most frequently
used procedures of APS, and also the functions of usage of the rewriting machine.
Experience of usage of APLANC on a number of commercial products such as VRS
(Verification of Requirements Specification) [7], MathLog (Mathematic Logic for
Universities) [8] displays that its usage significantly simplifies a view of the source
code, considerably reduces the development of terms and thus is simple enough in
usage. The slow work of the program using APLANC in comparison with the program
which doesn't use APLANC can be considered as a deficiency. However as we will
demonstrate further this retardation is not significant.

So, the language APLANC includes:
1. Function input_aplan.
2. Functions make_formula, make_hash_formula.
3. Function let.
4. Functions applr, appls, nbt, ntb.
All enumerated above functions of C ++ are described in class FPL (Formula

Processing Language). Therefore further in the article we will understand under the
object fpl the class FPL exemplar. Let's examine in details each of the enumerated
above functions.

3.1 Input_aplan function
The input_aplan function is used for import of data into the current interpreter in

APLAN language syntaxes (it can be transferred from the parts of ar-module [9] into
the arguments of this function). Syntaxes:

int input_aplan(const char *ccap);
The function returns 1 if the data have been successfully imported into the current

interpreter, and 0 in the opposite case, in the line ccap the text is transferred in
APLAN syntaxes. The result of fulfillment of this function for the interpreter will be
the same as if this text would be described somewhere in ar-modules.

The next instance (Instance 1) demonstrates the import of rewriting rule rsGCD
(search of greatest common devisor) into the interpreter and receipt of indicator to the
top of the tree, that was describing this rewriting rule:

 Вісник Харківського національного університету №890, 2010 149

fpl.input_aplan (“NAME rsGSD; rsGSD:=rs(x,y)((0,x)=x,isnum(x)->((x,y)=(y mod
x,x)))”); - import of data fpl.find_name (“rsGCD”); - search of created name (see [9]
chapter “names”).

At calling of the first function of the instance the name rsGSD will be created in
the interpreter and a value for it (the right part of the sign :=) will be specified. The
function isnum returns 1 if the tree x – is a number and 0 in the opposite case, it should
be determined in C++. The possibility of calling at application of rewriting rules
system to the tree, functions, written in C++ shall be foreseen. (see further).

3.2. Make_formula,make_hahs_fomrula functions
Functions make_formula, make_hash_formula are used for construction of trees in

syntaxes of APLAN language. Unlike the previous function it returns a tree by
incoming line, which will be completely identical at printing to the incoming line.
That is, if we use the function arguments from the previous example (input_aplan),
the line NAME rsGCD will be the left argument of the top «;». Syntaxes:

node_ptr make_formula(const char *ccap,int n,…);
node_ptr make_hash_formula(int hash,const char *ccap,int n,…);

Functions return the tops of constructed tree, the parameter ccap is a line according
to which a tree will be constructed. In the line such sub lines as «()» can be met,
instead of each incoming of such sub line from right to left the values listed after the
parameter n – quality of substitutes will be substituted. The second function form the
fist one differs by one parameter hash – that is hash number, which is used in order
not to construct repeatedly a tree according to the line. Here node_ptr – is a class of
smart indicators at the class of knots of trees of APS node. That is, class node inherits
the class of counter of references, and class node_ptr is determined as typedef
CSmartPtr<node> node_ptr [6].

The next instances (instance 2) show the work with these functions:
node_ptr x = make_formula(“a-b”,0);
node_ptr y = make_formula(“c-d”,0);
node_ptr z = make_formula(“()+2+()”,2,*x,*y);

The first and the second instances build trees without substitution, the third
example builds a tree and instead of two incomings «()» substitutes the values. The
following formula: (a-b)+2+(x-d) will be as a result in x.

3.3. Let function
The function le t is used for simultaneous check of the tree structure and is used for

receipt of the necessary sub trees of this tree if this structure coincides. Syntaxes:
int let(node_ptr &t,const char *ccap);
int let(node_ptr &t,const char *ccap,nodes_ptr args);
int let(node_ptr &t,string shash,const char *ccap,nodes_ptr args);

t – is incoming tree, value ccap is the same as in function make_formula, structure
nodes_ptr is a array of objects node_ptr, args – is a structure in which the necessary
sub trees will be saved, shash (STL string) – is a hash key, which is required in order
not to build new tree as per the line ccap.

Filling of args occurs in the following way: each occurrence of key name ac_h
(APLANC here) in ccap line is a signal that it is necessary to save a new tree with
args. If let is executable at the present tree, the key name yes will be equal to 1 and
function returns 1, otherwise – 0 and function returns also 0. Besides, if yes=1, in args

150 A. Letichevsky, A. Letichevsky (jr), V. Peschanenko

it will be saved so much corresponding sub trees as there were occurrences of the
name ac_h in line ccap.

Let’s examine an instance of application of let function in practice. (Instance 3):
 node_ptr x = make_formula(“x+y+2+3”,0);
nodes_ptr args;
if (let(”hash_add_op”,x,”_+_+ac_h+ac_h”,args)){
 prn(args.size());
 prn(args[0]);
 prn(args[1]);
}

Symbol «_», which occurs in let function of the instance means that it is not
necessary to save the corresponding tree. Function size returns the sizes of array. As a
result of execution of this code, we will see on the screen a column of numbers 2,2,3.

3.4 applyr,applys,nbt,ntb functions
Functions applyr, applys, nbt, ntb are used for access to rewriting machine from

C++ language. These functions are strategies which realize different modes of
application of rewriting rules systems to the given term [9]. Syntaxes:

int applyr(node_ptr &t,node_ptr &s);
int applys(node_ptr &t,node_ptr &s);
int nbt(node_ptr &t,node_ptr &s);
int ntb(node_ptr &t,node_ptr &s);

where are t – is a tree, to which it is necessary to apply rewriting rules system, s – is a
tree, which sets the rewriting rules system (i.e a tree structure should look like:
rs(…)(…)) . More details about the correctness of describing of the rewriting rules
system you can see here [9].

So, applyr – is a strategy which applies the rewriting rules system s to the source
tree t one time. If the rewriting rules system has been applied the internal name yes
will be equal to 1, otherwise – 0.

applys – is a strategy, which applies the rewriting rules system s to the source tree t
until it is not applicable. If the system has been applied at least once, internal name yes
will be equal to 1, otherwise – 0.

nbt – is strategy which realizes the bypass of the source tree bottom-up and applies
the strategy applys in each knot of the tree. If the rewriting rules system has been
applied at least once internal name yes will be equal to 1, otherwise – 0.

ntb- a strategy is determined in the same way as nbt, except the fact that it realizes
bypass of the tree up-bottom.

Let’s examine the instances of application of each strategy (example 4). For this
purpose we will use the rewriting rules system rsGCD from the instance 1. So,

node_ptr nm_val = fpl.find_name(“rsGCD”).val();
node_ptr x = fpl.make_formula(“12,16”,0);
fpl.applyr(x,nm_val);
fpl.applys(x,nm_val);
node_ptr y = fpl.make_formula(“4,12,16”,0);
fpl.nbt(y,nm_val);
node_ptr z = fpl.make_formula(“(4,12),16”,0);
fpl.ntb(z,nm_val);

 Вісник Харківського національного університету №890, 2010 151

Let’s examine in details each function of this example. Function find_name –
returns the structure of APS – name (as we used inpute_aplan from the first instance,
such name will be found). Next, the function val returns the meaning of such name,
i.e. directly the rewriting rules system itself. Description of function make_formula
was examined above. After the application of the strategy applyr it will be the
following tree in x: 4,12 and after applys – 4. Next, with the help of the strategies nbt,
ntb the greatest common divisor for the sequence of numbers can be found. The only
difference for both of these strategies is incoming trees: for nbt – right-side (in APS by
default the right- side trees are used, although this process is governed [10]), and for
ntb – left-side ones.

For the right work of the rewriting rules system rsGCD described above, the
canonizer of mod operation is required. In APLAN language this operation is
determined with the help of type – mark [9]. In order to realize the canonizer of the
mark to C++ it is necessary:
1. to realize the function with the following title int can_name(clew_ptr &cl,node_ptr

&arg), where clew_ptr is a class of smart indicators for working class with the
basic data structures of APS. Clew, arg – a tree occurs here at calling of this
function, the main top of which is a mark with this canonizer.

2. to install this canonizer with the help of function set_info, class of marks of APS
mark for the required mark.

For instance (instance 5):
 int add_can(clew_ptr &cl,node_ptr &arg){
…
}
…
fpl.find_mark(“ADD”).set_info(add_can);

Function find_mark effects search of the mark with name ADD (it is meant in this
example that the mark will be always found). Function set_info sets canonizer for this
mark.

Except the canonizers of marks it is necessary to foresee the possibility of calling
of C++ functions at application of the rewriting rules system. For realization of such
functions it is required:
1. to realize the function with the following title: int func_name(clew_ptr

&cl,node_ptr &nd). Calling of this function will work as per the rules of the
interpreter of APLAN language [9].;

2. to add to the corresponding record to the structure FuncsDecript – array of pairs of
view: string name, name c++ function.

For instance (instance 6):
int isnum(clew_ptr &cl,node_ptr &nd){
…
}
const stFuncsDecript FuncsDescripts [] =
{
…
 {"isnum", isnum}
};

152 A. Letichevsky, A. Letichevsky (jr), V. Peschanenko

4 Converter from APLAN language to APLANC language.
Conversion process of the programs written in terms rewriting systems to the

language of their realization is quite difficult task. In many systems of terms rewriting
listed above such converters exist and they support only very limited part of the
language. It causes inefficiency of their usage in general case, as in quite big programs
many codes have to be transferred manually in any case, because to write programs
taking into consideration this language limitation only is also quite difficult task.

As the slow work of APS shows its worth at working with procedural and rewriting
parts of APS, the aim of our converter is to build the source code of C++ program in
such a way that at starting of the program the interpreter of APS wouldn’t be used.
That is we would like to build С++ code as per APS program or as per some of its
part, which is able to use the APLANC language and optimized rewriting machine (or
this code will be converted in a procedures in C++). But the realization of C++
functions which were used by the interpreter of APS program, is entrusted to the user.
The speed of performance of procedures written on APLANC in 10 times exceeds
speed of application of rewriting rules systems.

Actually it means the formation of some list of ready realized functions of C++ of
APS system, which the user has to transfer himself from the source code of APS to the
source code of the program.

At the present stage of the realization of the converter of APS we have made
enough experiments in order to lay dawn the requirements to the APS converter. They
are the following:
1. The source code of the system should depend only on FPL.
2. The source code of the system should use the language APLANC.
3. All necessary canonizers of marks should be described by the user.
4. Converter should generate the source code in such a way in order not to put the

changes by the user, but in order the user could put the separate parts of this code
into the existing program.

At present in order to finish the final version of converter prototype it is lack filling
of different APLAN language operators. As to the difficulties, this work is not
complicated as the major part of procedural possibilities of APS is ready.

Next we are to determine the several modes of source code writing in APS in order
to understand, whether it is worth using APS tools for development and what kind of
results we will receive.

So, in the process of transference from program prototype to its final version it is
possible:
1. to build the source code manually, i.e. without the use of APS tools;
2. to use APLANC language without the converter;
3. to use the converter.

Let’s examine theses modes of construction of program final version according to
its prototype on the following instances:
1. Construction of disjunctive (DNF) and conjunctive (CNF) normal forms for the set

expression.
2. Operations of insert (INSERT) and removal (REMOVE) of the rule into the

rewriting rules system without its re-compiling in REM language [11]
(description of this algorithm goes beyond the discussion of the present paper and
will be described in the next publications of the APS authors).

 Вісник Харківського національного університету №890, 2010 153

Thus, the results of the experiment, being made by the APS authors are represented
in the following table 3

Table 3. Experiment results
№ Algorithm’s name Lines of the

code (psc)
Manual construction

(man/hour)
APLANC without the
converter (man/hour)

APS tools
(man/hour)

1 DNF+CNF 60 3 1,5 0,5
2 REMOVE+INSERT 160 16 8 2

5 Conclusion
The system of algebraic programming APS exceeds the majority of criterions of

well-known systems of terms rewriting. Among these criterions we can outline the
most two important ones: the presence of procedural language (allows using
simultaneously the paradigms of declarative and imperative languages) and the
commercial using (using of system in real big commercial products and not only in
different researches).

The using of tools designed for APS allows the transfer from writing of the
prototype in the system itself easily and quickly to its final realization on C++
language.

More detailed information about the process of transfer from the prototype to the
product will be described in the next publication of the authors: “APS: The transfer
from the prototype to the product”.

REFERENCES

1. Glushkov Institute of Cybernetics [http://www.icyb.kiev.ua].
2. Stratego [http://www.program-transformation.org/Stratego/WebHome].
3. Maude [http://maude.cs.uiuc.edu].
4. Elan [http://elan.loria.fr/].
5. LitSoft [http://www.litsoft.org].
6. Smart Pointers - What, Why, Which? [http://ootips.org/yonat/4dev/smart-

pointers.html].
7. A.A. Letichevsky, Yu. V. Kapitonova, V.A. Volkov, A.A. Letichevsky jr, S.N.

Baranov, V.P. Kotlyarov, T. Weigert Systems Specification by Basic Protocols
[http://portal.acm.org/citation.cfm?id=1103712.1103717&coll=&dl=].

8. Pedagogical Software Mathematical Logic
[http://www.ksu.ks.ua/downloads/LabRVPPZ/MathLog_eng.htm].

9. APS user manual [http://aps.ksu.ks.ua/files/APS.user%20manual.pdf].
10. V.S Peschanenko Using Algebraic Programming System APS for Algebra

Teaching Support System in School // Control System and Machines (in russian).
− 2006. − №4. − С. 86−94.

11. A.A. Letichevsky, V.V. Chomenko Rewriting Machine and Optimization of
Terms Rewriting Strategies (in russian) [http://aps.ksu.ks.ua/files/8.zip].

Надійшла 29.07.2009.

© A. Letichevsky, A. Letichevsky (jr), V. Peschanenko, 2010

