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Structural difference model of unsteady high temperature
processes
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The paper provides an overview of numerical methods for solving boundary value
problems, with excretion of their characteristic weaknesses in nonstationary problems
with high gradients of the desired function, as well as an overview of the newest
inclusion geometric information methods in analytical structures for numerical and
analytical methods of solution. It is proposed a numerical-analytical structural-
difference approach to high-speed nonstationary temperature processes. The series of
numerical experiments were carried out, which showed high accuracy of the proposed
method.
Key words: discrete mathematical model boundary-value problem, analytic structure of solution,
nonstationary temperature processes.

Наводиться огляд чисельних методів розв'язання крайових задач, з виділенням їх
характерних недоліків при вирішенні нестаціонарних задач з високими
градієнтами цільової функції, а також огляд новітніх методів включення
геометричній інформації в аналітичну структуру, для чисельно-аналітичних
методів рішення. Запропоновано чисельно-аналітичний структурно-різницевий
підхід до вирішення високошвидкісних нестаціонарних теплових процесів.
Виконано ряд обчислювальних експериментів, які показали високу точність
запропонованого методу.
Ключові слова: дискретна математична модель, крайова задача, аналітичні структури
розв’язку, нестаціонарні теплові процеси.

Приводится обзор численных методов решения краевых задач, с выделением их
характерных недостатков при решении нестационарных задач с высокими
градиентами искомой функции, а так же обзор новейших методов включения
геометрической информации в аналитическую структуру, для численно-
аналитических методов решения. Предложен численно-аналитический
структурно-разностный подход к решению высокоскоростных нестационарных
тепловых процессов. Проделан ряд вычислительных экспериментов, которые
показали высокую точность предложенного метода.
Ключевые слова: дискретная математическая модель, краевая задача, аналитические
структуры решения, нестационарные тепловые процессы.

1. Review of methods for solving boundary value problems
For the solution of boundary value problems of heat conduction, mechanics,

electrodynamics and other fields for areas with non-canonical forms and curvilinear
parts of boundaries the numerical methods most widely used are following:

- The finite difference method [1-3];
- The finite element method [4, 5];
- The integral equations method [6, 7];
- The variational-difference methods [8-10];
- Combination of several methods [11-12];
In the finite difference method boundary value problem for the differential

equation reduces to a system of algebraic equations. When approximating the
boundaries that do not coincide with the coordinate curves, particularly for desired
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functions large gradients, the method gives significant errors. To overcome this
limitation curvilinear orthogonal coordinates [13] (also required the approximation of
boundaries) and local curvilinear nonorthogonal coordinates [14, 15], which are
related to the shape of the body are used (in that case need to create algorithms for the
calculation in each area, and there is a risk to get physically inadequate decision).

In the integral equations method the original partial differential equations are
replaced by the integral equation in region extent. The boundary is divided into a finite
number of isothermal parts, and there is no problem to satisfy the boundary
conditions. Unfortunately, the method faced with difficulties based on principles of
the mathematical nature in solving nonstationary problems with strong nonlinearity
parameters.

The finite element method for nonlinear nonstationary problems still needs to be
improved in comparison with more developed method of finite differences.

There is general lack of numerical methods for solving boundary value problems:
discrete approximation is used to both   differential equations solution and boundary
conditions accounting. In problems where the unknown function has a large gradient
at the boundary, this leads to a growing of nonlinear superposition error and becoming
higher than the allowable error.

Thus, for problems with high gradients of unknown function, promising
development is not numerical, but numerical-analytical methods. However, as noted
by G. I Marchuk, H Ortega, R. Schechter and other scientist, here there are difficulties
associated with the construction of the basis (coordinate) functions for each point in
time, which is exactly satisfying the nonstationary boundary conditions.

2. Review of methods for including geometric information in the structure of
solutions

To create a structure for solving boundary value problems in the numerical-
analytical methods it is required a description of the boundaries of the complicated
regions. The equation of the complicated boundaries  can be constructed using R-
functions (RFM or R-Function Method) [16], PS-functions [17,18] and S-functions
[19] by means of known equations of simple regions Development of numerical
functions, through which it became possible to build in an implicit form of the
boundary equations, started with the creation of R-functions by V. L. Rvachev . The
complete system of R-functions is given by eq. (2.1):
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(2.1)

R-functions gave a good account of oneself as a method of analytical geometry,
suitable for describing complex geometric objects. However, they have some grave
disadvantages that occur when using R-functions in the basis functions in the
analytical structure. The structure, obtained with they help, is unphysical, since there
is not possible to describe the boundaries curvature using R-functions.  The define
coefficients of the Ritz’s algebraic system which is obtained of calculation of double
integrals over the research region, are equal to infinity.



Вісник Харківського національного університету №1015, 2012 175

R-functions’ potentialities are restricted by analytical geometry, for solving
boundary value problems it is necessary to solve completely the inverse problem of
differential geometry. And that means not only to write the equation of the border,
which are "normalized" on the region boundary, but also accurately account for the
curvature of the boundary. In this regard, A. P. Slesarenko in 1972 had proposed PS-
function (2.2) [17], which allow strictly solve the inverse problem within the bounds
of differential geometry. Furthermore, PS-functions are "loaded" with additional
variables, which make the W support function "plate-shaped" , this property  let to
build the analytical structures of solutions whose behavior are physically adequately in
the regions adjacent border  as well as in the regions’ main body. If  = 2 in the PS-
functions, they coincide with the R- functions for  = 0. If  ≥ 4 PS-functions allow
you to accurately account for the curvature of the boundary.
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The necessitate to consider structural elements of complex shape, and physical
processes which should be described adequately in the vicinity of the corner points,
had led to the creation of S-functions (2.3). As there are no things in a real world with
mathematical sharp corners, some exact solutions are unphysical in the neighborhood
of the corner points (For example, the exact solution of Blasius problem for semi-
infinite plate in axial flow of a laminar flow of a viscous incompressible fluid [20], the
exact solution of the problem of determining the magnetic field between two magnets
semi-infinite cylindrical shape [21]). S-functions allow us to construct continuous
functions with continuous derivatives, and describe the real boundary of the body in
the asymptotic approximation with the desired degree of accuracy; they might turn an
unphysical precise mathematical description into an actual description of the
boundary:
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3. Problem definition of the research
Disadvantages of the solution of boundary value problems by numerical methods

are most manifest in the modeling of high-speed high-gradient temperature processes.
Such models are required in high-tech engineering fields such as space and nuclear,
where it's needed a solution with high accuracy.

We will consider the problem of heat conduction with nonstationary boundary
conditions (3.1):
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(3.1)

where the functions c (t), λ (t), h (t) describe the time variation of the specific heat of
material structural element, its thermal conductivity, and the relative heat transfer
coefficient, respectively, ρ – structural element density, Te – environment temperature,
Fs – sources.

We pass on to dimensionless quantities of position and time (3.2)
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The numerical-analytical approach is offered to the solution of unsteady heat
conduction problems based on the joint application of difference schemes of high
order of accuracy, analytical structures and PS-functions.

4. Numerical-analytical approach to structural-difference modeling of the
high-speed temperature processes

We will consider the application of structural-difference method to the solution of
heat conduction problem with nonstationary boundary conditions for an infinite
rectangular prism (4.1) -1≤x≤1, -1≤y≤1:
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The exact solution of the model problem we choose in the form of eq. (4.2):
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(4.2)

The structure of the solutions (4.3) [22] for the problem (4.1) exactly satisfies the
time-dependent boundary conditions and has a modular construction,  any analytical
dependence of Biot number and ambient temperature may be substituted in it.


l,k

l,kl,k0 )Fo,y,x(C)Fo,y,x()Fo,y,x(T  , (4.3)
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Ck,l – an unknown coefficients; Ф0(x,y,Fo) – function, which  is exactly satisfy the
nonstationary inhomogeneous boundary conditions; χk,l(x,y,Fo)  basis functions,
which exactly satisfy the nonstationary homogeneous boundary conditions; Pk(x),
Pl(y)  normalized Chebyshev polynomials; Wl(x,y) and W2(x,y) – PS-functions for
an infinite rectangular prism of square section, DW1(x,y) and DW2(x,y) – derivatives
of Wl(x,y) and W2(x,y) in x and y, respectively, with a fixed value DWl(x,y) and
DW2(x,y) on the border.

Information about the geometry area is defined by PS-functions (4.4):
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Figure 1 shows the W1(x,y) support function of =2; 4 and 8 which satisfying the
zero curvature at the boundary of an infinite prism of square  section and provides the
best approximation properties of an analytic structures.

The discrete mathematical models are constructed using the finite-difference
schemes [22]: "leapfrog" (4.5) and the "box" (4.6)

    s
j,i.fl9

s
j,i3Fo TT  (4.5)

    s
j,i.b9

s
j,i3Fo TT  , (4.6)
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Fig. 1. The W1(x,y) support function of =2 (lower graph), =4 (middle
graph), =8 (upper graph)
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A necessary spectral Neumann stability conditions [22] |λ(,,r)|≤1 for the schemes
(4.5) - (4.6), respectively:
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The maximum value of the r parameter, which complied with the necessary
stability condition: r = 0,511 for the scheme (4.5), r = 0,889 for the scheme (4.6).
Figure 2 shows the spectra of the complex λ(;;r) for the schemes (4.5) and (4.6),
satisfying the necessary spectral Neumann stability conditions.
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a b
Fig. 2. The spectrum of λ(;;r):(a) – scheme (4.5), r = 0,889;

 (b) – scheme (4.6), r = 0,511
For each point of time we will obtain a discrete model in the form of equations. In

matrix form equation (8) is given by: GCB  . To go to an algebraic system of
equations of the form nxn, multiply both sides by the transposed matrix

TB : GBCBB TT  .
From the resulting linear system of equations it is easy to find the unknown

coefficients of the basis functions. To interpolate them over the τ (4.9)
FoP1e  , (4.9)

where Р1 – the rate of heating and cooling, we will find the values of the
coefficients of basis functions for the entire region ]1;0[ . Thus, we obtain an
approximate value of the temperature over the whole duration of time (4.10):


l,k

l,kl,ke ),y,x()(C),y,x(T),y,x(T  . (4.10)

5. The results of numerical experiments
The series of numerical experiments is conducted in the range from 0.001Fo to

0.02Fo, which is characterized by the large gradients of the target function. In all
numerical experiments the time step was 0.001Fo, were used 55 coordinate functions,
1=0.25.

Numerical experiment 1 The parameters of the exact solution, environment
temperature and Biot number: )xexp()x( 2 , )yexp()y( 2 ,

 )500Fo(J1120)Fo(Te 0  , )1)Fo500(sin(70)Fo(Bi  . Figure 3а shows graphs
of temperature of infinite prism of square section (Ω region).

Table 1 shows the temperature in Ω region at three points of time. Temperatures
calculated approximately are given at the top cells of the table, the exact temperature
are given at the bottom cells. Calculations were carried out on difference scheme with
three layers in time and nine points by coordinates, type "box", 900 knots, =4.
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Table 1. Numerical experiment 1. The temperature in Ω region at three points of time and the
maximum relative error of calculation
Fo Temperature (0;0) (0.5;0.5) (1;1) ε max, %

approximate 2793,083 960,8108 7,528908 0,5020250.01 exact 2793,101 960,8001 7,518958
approximate 147,2439 143,4807 141,4281 0,0154160.1 exact 147,2538 143,4799 141,4469
approximate 437,11 248,6085 149,6357 0,0202590.2 exact 437,1288 248,6061 149,6476

Numerical experiment 2 The parameters of the exact solution, environment

temperature and Biot number: 2

2

x1.01
x1001)x(



 , 2

2

y1.01
y1001)y(



 ,

 Fo
e e110000)Fo(T  , Fo10e)Fo(Bi  . Figure 3b shows graphs of temperature

in Ω region at the moment 0.02Fo. Table 2 shows the temperature in Ω region,
difference scheme has 900 knots, =8.

Table 2. Numerical experiment 2. The temperature in Ω region at three points of time, calculated
using the difference schemes the "leapfrog" (3-9 lf) and the "box" (3-9 b), the maximum relative
error of calculation

Fo difference
scheme (0;0) (0.5;0.5) (1;1) ε max, 10

-3

%
3-9 lf. 12,196087 2798,053955 9282,056545 0,758424
3-9 b 12,195341 2798,053643 9282,054198 0,767263

0.01

exact 12,574497 3279,109000 9462,714000 
3-9 lf. 101,827401 2983,914064 9504,085562 1,558383
3-9 b. 101,826284 2983,913430 9504,063103 1,205007

0.1

Exact 101,826284 2983,913430 9504,063103 
3-9 lf. 200,518805 3202,403626 9765,789659 1,989289
3-9 b. 200,517572 3202,402690 9765,751910 1,449082

0.2

exact 200,517572 3202,402690 9765,751910 

Numerical experiment 3 The parameters of the exact solution, environment
temperature and Biot number:  2)3/2xcos()x(   ,

 2)3/2ycos()y(   ,  Fo5.0
e e110000)Fo(T  , Fo230e)Fo(Bi  .

Figure 3c shows graphs of temperature in Ω region at the moment 0.01Fo. Table 3
shows the temperature in Ω region, depending on the  support function's coefficients,
by the example of  temperature at the moment 0.01Fo. Calculations were carried out
on difference scheme with three layers in time and nine points by coordinates, type
"box", 400 knots.
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Table 3. Numerical experiment 3. The temperature in Ω region and maximum relative error of
calculation on the support function's coefficients at the moment 0.01Fo

Fo Coefficients (0; 0) (0.5;0.5) (0.9;0.9) ε max, %
β=2 372,4742 80,17161 61,23909 0,029677
β=4 372,4785 80,1695 61,23814 0,017820
β=6 372,4781 80,1676 61,23457 0,016436

0.01

Exact 372,4826 80,16862 61,23158

а b

c
Fig. 3. The temperature at Ω region:

(а) Numerical experiment 1. The temperature at the moment 0.001Fo (lower graph) and at
the moment 0.02Fo (upper graph);

(b) Numerical experiment 2. The temperature at the moment 0.02Fo;
(с) Numerical experiment 2. The temperature at the moment 0.01Fo
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6. Summary
Structure-difference method combines the advantages of numerical methods and at

the same time free from their shortcomings. It allows you to accurately account for
nonstationary boundary conditions for any given time-depending  functions in the
boundary conditions, physical and geometrical characteristics of the body, is effective
for the solution of unsteady boundary-value problems of desired function , with high
gradients both in time and coordinates.

Models constructed on the basis of the method allows, without rebuilding the
structures, to assess the desired function on the entire range of admissible parameters,
which can be defined as an analytic function. Thus, it is possible to do qualitative
analysis of the fine structure of dynamic processes, including such complex processes
as the thermophysical processes with unsteady boundary conditions.

On the basis of structural-difference models can be created a database of the
temperature behavior of structural elements of various shapes, materials and functions.
The information in this database, thanks to interpolation of the coefficients of basis
functions, can be stored in succinct format, which provides data compression.
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