BicHuk Xapkiscbkoro HavioHanbHoro yHisepeuteTy Ne1089, 2013 103

UDC 517.698.519.6

A mathematical model for the characteristic impedance:
the dependence on temperature and frequency

O. V. Kostenko
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This paper is devoted to the estimation of the dependence of the characteristic imped-
ance of the material on the temperature and the frequency of the incident electromag-
netic field. The result is illustrated with plots of dependencies of moduli of real and
imaginary parts of the characteristic impedance on the reduced temperature.
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PoboTa npucesiueHa OIiHIII 3aJI€KHOCTI XapaKTEPUCTUIHOTO IMITEAHCY MaTepiany Bif
TEeMIIepaTypy i 4aCTOTH 30YIXKYI0UOro eJIeKTPOMArHiTHOTo nossi. Pesysbrar inmoctpo-
BaHO rpadikaMy 3aIeKHOCTI MOIYJIB JAifiCHOT Ta ysBHOI YaCTHH XapaKTEpPUCTHYHOTO
iMITeIaHCy BiJ IPHUBEIEHOT TEMIIEPaTypH.

Kniouogi cnosa: xapakmepucmuunuii imneoanc, KoegiyieHm 3an0maeHHs, HAONPOGIOHICMb,

eﬂekmpwnaznimne noaue.

Pabota mocBsimeHa oneHke 3aBUCHMOCTH XapaKTePHUCTUUECKOTO MMITElaHca MaTepHa-
J1a OT TEeMIIepaTypsl M 9acTOTHI BO30YXKIAIOMIET0 IEKTPOMArHUTHOTO TOJs. Pe3yib-
TaT IPOWLTIOCTPUPOBAH rpadukaMu 3aBUCHMOCTH MOZyJIeH BEIIECTBEHHOW M MHUMOM
qJacTel XapaKTepUCTUYECKOro UMIIEaHCa OT IPUBEICHHON TeMIepaTyphbl.

Kniouegvie cnosa: xapakmepucmuueckuit umneoanc, KoIgguyuenm npenomnenus, ceéepx-
nPOEOOUMOCb, INEKMPOMAZHUNMHOE noTle.

The rigorous set of the two-dimensional scattering and diffraction problem for
a plane monochromatic electromagnetic wave which depends on time as e on non
perfectly conducting objects leads to the Robin boundary condition for the Helmholtz
equation as was shown in [1].

This boundary condition contains a parameter depending on the characteristic im-
pedance of the material which the reflecting object consists of. We consider
the materials whose atoms contain rigidly attached electrons and so-called free elec-
trons providing the conduction of the material. The number of rigidly attached elec-
trons is not considered. We consider a material in which all the electrons of the atoms
are free and a material where the number of free electrons depends on the temperature.
We have used the dependencies obtained in the papers of C. J. Gorter and H. Casimir
[2], D. A. Bonn and coauthors [3], G. F. Dionne [4], O. G. Vendik, A. Y. Popov [5].
We are obtained the explicit formulae that enable us to estimate the characteristic im-
pedance of materials. For all the dependencies ceteris paribus the plots of moduli of
real and imaginary parts of the characteristic impedance were built and they are close
to each other.

In this paper in contrast to other papers (e. g. [6-8]), the characteristic impedance is
associated with the refraction coefficient of the electromagnetic wave. A physical in-
terpretation of real and imaginary parts of this coefficient is given. For niobium and
lead the plots of dependencies of moduli of real and imaginary parts of
the characteristic impedance from the temperature were built. The dependencies of
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the real and imaginary parts of the impedance on the frequency were obtained.

The word “material” stands for a mathematical model of the material, the set of
atoms. We assume that the atoms do not interact during the oscillation caused by ex-
citing electromagnetic field. Thus to characterize the oscillation of the whole system it
is sufficient to know the character of the oscillation of an atom.

The right orthogonal coordinate system is chosen so that the atom is situated at
the point with zero coordinates and the z-axis is directed opposite to the wave vector
of the exciting electromagnetic field; the x-axis direction coincides with the direction
of the vector of the exciting electric field.

Consider an £ modes electromagnetic wave falling on an atom. The electric field

has  the form E(xi(t),yi(t),zi(t)) =(E)’c (t),0,0), where  E. (f)=Eie_iwt,
The magnetic field has the form ;(xi (t),yi (t),zi (t)) = (O,H; (t),H; (t)) , where

H ’y (1)=Hle™ and HL(t)=HLe ™. We assume that forced oscillations of

the electron do not depend on xi(t), yi(t), zi(t), y- and z-components of

H' (' (1), (1), (1))
As in [9] we assume that the model of the atom of the material is a dissipative iso-
tropic oscillator with own cyclic oscillation frequency @, @ =\/% , where k is

a dependence coefficient linking the restoring force and the deviation of electron from
the equilibrium position and m is the mass of the oscillating electron.

Under the effect of the electromagnetic field free electrons inside the atom begin
forced oscillations. The isotropism provides the same restoring force of the electron
for any direction of the electric field.

Thus three forces act on the electron. The first is an outside force caused by

the electric field. The second is a dissipative force equal to —7X(t) where y is
the dissipation coefficient and x(t) is a coordinate. The third is the restoring force
equal to —a)gx(t).
Let us denote the force acting on the electron from the side of the field as F then
F, =quie_iwt where ¢, is the electron charge. Then the second Newton law will
take the following form
mjé(t)zquie_iwt —m}/)'c(t)—ma)gx(t). e
—iw

We are going to search the solution of (1) in the form x(¢)=xye " where x is

a constant. We get that

x(1)= Te EL(1). )
d )

—w® - oy + ma)g

From (2) one can see that x(¢) is proportional to E%(¢). Similarly, we can prove
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that in the case of exciting of the material by A modes electromagnetic wave x(t) is
proportional to HY (r).

The projection of the induced dipole moment of the atom on the x-axis is given in
[9] by the formula p, = gga (@) EL () where a(w) is the atomic polarizability. From
the other hand p, =g,x(¢) we have

2 .
Px =& 9e Z)Ellf (t)

méey (—a)2 —iwy + may
g

therefore a ()= mgo(‘wz—iawm”oz ) '

Let us denote the polarization vector by P and the number of free electrons in
the atom by N . Then the dependence of the projection of P on x-axis on N will take
the form P, = gyNa(w)E, (see [9]).

Consider amaterial that fill thehalf of thespace that is the set
{(x,y,z) el3:xell,yell,z< O} consisting of atoms whose model is presented

above. The exciting field is the same. The Maxwell equations in the matter have
the following form

_ e
rotE® (z,t) = ——aB (Z’t) ,
ot
_ De
rotH® (Z,t) = _—6 (Z’t) ,
ot

divE(z,t) = —idivﬁ,
€0

div]—? z,t)=0,
(2.1)

where E° is the electric field, H¢ is the magnetic field, B® is the magnetic induc-

tion and D¢ is the electric induction.
Knowing that D¢ = £y E + P we get
52E§ (z,t) 1 OE3 (z,1)
2 T2 a2 ©)
Oz c ot

The length of the electromagnetic wave in the matter is defined by the formula

(1+Na(a)))

lz%-% where n is the refraction coefficient. The change of the wave length is

the result of the imposition and the interference of the incident wave and the waves
caused by the oscillating electrons.

We are going to search the solution of (3) in the form E¢(z,¢)= Ee ™™ where
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k =2Z is the wave number. We get that

A
1
k? =’ ~(1+ Na(o)). 4
~(1+Na(w)) (4)
From (4) using the formula & =% we get

qu 1

mey —w* —iwy + ma)o

2=1+Na(a)) 1+ &)

2
The number 1’1—? is called the plasma frequency and is denoted by @, . For radio
0

waves up to ultra short waves the condition of smallness of @ compared to @, takes

place. For free electrons ay is equal to zero.

For materials that model ordinary elements y is not equal to zero and for materials
that model superconducting elements y is equal to zero. Consider ordinary elements.
Ignoring 1 and @?* in (5) we get

N 1
w2 = q
mgo a

In the equation whose solution describes the motion of the electron, the force re-

sisting its motion —my)'c(t) was used. As the averaged motion of electrons under

the effect of the electric field is uniform (see [9]) the averaging of the resistance force
must be equal to the force acting on an electron from the side of the electric field. We
obtain that myv=gq,E, where v is the averaged velocity. From the other hand we

have v=

E . .
%TX' 7 where 7 is the average time of the free path of the electron. There-

fore 7 = ;/_1

qu

The conductivity of a material is given by formula o = T then the refraction

2

coefficient will take the form n* =42 — - Using the following fact

/ a +b2+a ,\/az—i-bz—a

finally we obtain the formula for the refraction coefficient
quz T

=(1+i
n=(1+1) 2e900m

(6)
where the branch of the square root is chosen such that Im#» > 0. This condition pro-
vides the decrease of electromagnetic wave amplitude during the penetration of

) Ee —iwt zkz

the wave into the material. Substituting (6) in Ey ( we obtain
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z

2
i |oNg 711 2’2’
i N
ES(zt)=ESe e 1 2m o V@M

Thus one can see that the real part of (6) defines the change of the wave length in
the material and the imaginary part defines the coefficient of wave attenuation.

Now we consider an equation rotH°(z,t)= —%De (z,t). We have that

— GE ,t
rotHe(z,t) = —80}12%. @)

In E-mode case the equation (7) will take the following form

8H; (z,t) o2 8E; (z,t)

—_— = on ——-

Oz ot
Let H; (z,1)= H;e_ia’teikz then
B =—ne.
cegn

Denote the characteristic impedance by Z . Finally we obtain that

_(1_: /mﬂow
Z—(l—l) 2Nq21-.
e

Consider a material all the electrons of which form a superconducting system i.e.
all of them are free. In this case @) and y are equal to zero. Ignoring 1 in (5) we get
2
Ng, 1
}12 _ Vg,

mey o

2

_ .| Nqg
n=i —2

msoa)

Thus the refraction coefficient is pure imaginary.
Using arguments similar to presented above we obtain a formula for the characte-

ristic impedance
2
Z=—i /% ‘
Ng,

Now we consider a material in which free electrons form two subsystems a normal
one with particles number density N, and a superconducting one with particles num-

ber density N;. Note that N =N, + N . Each of them gives a contribution to polari-
zability of the material with atomic polarizabilities «, (@) and o (@) respectively.
From the Maxwell equations we have
o%E® z,t 1
—_ ( ) = (1+ N,a, (a)) + Na, (a)))

_ 1 OEy (21)
o2 c?

ot?
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It follows that for the square of the refraction coefficient we have

2 2
Nnqe 1 N Nyq, 1

mey -’ — iy + ma)g mey —w* —iwy + ma)g
2

®)

n2=1+

Ignoring the first term in (8) and —w +ma)g in the denominator of the second
term and noticing that in the third term @, and y are equal to zero we obtain

2 2 o 2
n2:_NnQe 1 _NSQe Lz P —£+i&a)r )
mey oy  mey @F | @ N N

Taking the square root we get

R R

where the branch of the square root is chosen such that Im#» > 0. This condition pro-
vides the decrease of electromagnetic wave amplitude during the penetration of
the wave into the material. The characterization impedance is obtained from
the following formula

1
cepgn ’
Thus the formula for the characteristic impedance will take the following form

Wl -Cee )i

7 =

R et ]

. . N,
Consider a function from the reduced temperature f (tn ) = where ¢, = Tl and
n

T,

, 1s atemperature of the superconducting transition of the material. Note that

%zl— f(t,). Then using that c=—— and Z;= & we obtain the following

form of the formula for the characteristic impedance

2 2
o2y | NO-£ () +(F()or) ~157(0)
V20, (l—f(tn))2 +(f(tn)a)r)2

7=

) L= (@) +(f (o) +1- £ ()
(1= () +(f (1) 07 )’

The average time of free path of aelectron can be estimated using the formula
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T=F taking into account the known minimal value of the conduction at
nqe

a temperature over 7,. The simplest formula for f (tn) is given in the model of

C. J. Gorter and H. Casimir [2]. Itis f (tn ) = t,f . There are other models. The model of
w

: : _ W=, . _ A4t
G. F. Dionne [4] is f(tn)—e n . the model of D. A. Bonn [3] is f(tn)—t n

n b

the model of O. G. Vendik and A. Y. Popov [5]is f(z,)= t,?

To calculate the dependence of the characteristic impedance on the temperature we
used the following reference information:

— the absolute zero of the temperature is equal to —273,15 degrees Celsius;

— the boiling point of helium is equal to 4,21 degrees Kelvin;

— the boiling point of hydrogen is equal to 20,4 degrees Kelvin.

For niobium:

— the temperature of the superconducting transition is equal to 9,22 degrees
Kelvin;

— theratio of specific conductivities at 20,3 degrees Kelvin and 273 degrees
Kelvin is equal to 0,338 ;

— the critical magnetic field strength is equal to 318,32 103 A/m;

— the molar mass is equal to 41- 1073 kg/mol;

— the density is equal to 8,4-103 kg/m’;

— the electron density is equal to 6,17 - 10%° 1/m’;

— the plasma frequency is equal to 4,43- 10'6 Hz;

— the specific resistance at 273 degrees Kelvin is equal to 13,1- 107 Om'm;

— the time of free path of an electron is equal to 1,30- 1071 S;

— the frequency of exciting field is taken equal to 30 GHz and the associated
wave length is equal to 1 sm.

Modulus of ReZ Modulus of ReZ
0,08 4 = = -Modulus of ImZ 0,08 4 = = -Modulus of ImZ

model of G. F. Dionne
o
8

Characteristic impedance of lead
model of C. J. Gorter and H. Casimir

o
=
8

Characteristic impedance of niobium,

T T T T 1 T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10
Reduced temperature Reduced temperature

Fig. 1. Fig. 2.

On the figure 1 the dependence of moduli of real and imaginary parts of
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the characteristic impedance on the reduced temperature under the assumption that

f(t,)=15 is shown. On the figure 2 the same is shown under the assumption that

w-
f(t,)=e ™ where W =1. On the figure 3 we assume that f(,)=7, " and on

3
the figure 4 we assume that f(z,)=¢2. The solid line stands for modulus of the real
part and the dash line is for modulus of the imaginary part.

——Modulus of ReZ ——Modulus of ReZ
0,08 4 = = =Modulus of ImZ 0,08 4 = = =Modulus of ImZ
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Fig. 5. Fig. 6.
For lead:
— the temperature of the superconducting transition is equal to 7,26 degrees
Kelvin;

— theratio of specific conductivities at 20,5 degrees Kelvin and 273 degrees
Kelvin is equal to 0,0301;

— the critical magnetic field strength is equal to 63,664 - 103 A/m;
— the molar mass is equal to 82- 1073 kg/mol;

— the density is equal to 11,34-103 kg/m’;

— the electron density is equal to 3,33- 10% 1/m’;
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— the plasma frequency is equal to 3,25-1016 Hz;
— the specific resistance at 273 degrees Kelvin is equal to 19,3-10_8 Om'm;

— the time of free path of an electron is equal to 1,83- 10714 S;

— the frequency of exciting field is taken equal to 30 GHz and the associated
wave length is equal to 1 sm.

On the figure 5 the dependence of moduli of real and imaginary parts of
the characteristic impedance on the reduced temperature under the assumption that
f (tn)zt;1 is shown. On the figure 6 the same is shown under the assumption that

w

w -2

f(tn)z e m where W =1. On the figure 7 we assume that f(tn)zti_t" and on
3

the figure 8 we assume that f'(#,)=12. The solid line stands for modulus of the real

part and the dash line is for modulus of the imaginary part.

——Modulus of ReZ ——Modulus of ReZ
0,030 o = = =Modulus of ImZ 0,030 o = = =Modulus of ImZ
0,025 - 0,025 -
0,020 4
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0,015 0,015
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model of O. G. Vendik and A. Y. Popov

Characteristic impedance of lead,
model of D. A. Bonn et al.
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Fig. 7. Fig. 8.

The formulae obtained to calculate the characteristic impedance enable us to esti-
mate its value for different materials at different temperatures and frequencies. For
materials in normal state the real part and the imaginary part of the characteristic im-
pedance are equal and are proportional to the square root of the frequency. One can
easily see that real part of the characteristic impedance of a material modeling a metal
in the superconducting state is proportional to the square of the frequency and imagi-
nary part is proportional to the first degree. Besides, the imaginary part of
the characteristic impedance is greater than the real part by four to five orders of mag-
nitude for all values of the reduced temperature except for those close to unity.

The obtained formulae enabling us to estimate the characteristic impedance of dif-
ferent materials let us get physically based solutions of wave scattering and diffraction
problems. The method of obtaining such solutions was proposed in [1] developed in
[10] widely presented in [11] and modified in [12].

The author thanks professor Yu. V. Gandel for his interest to this work.
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