
232

 « . .

»

 681.3 703, 2005, .232-244

Visualization of Algebraic Surfaces

Gennadiy Chuyeshov
Kharkiv Karazin National University, Ukraine

This paper deals with the visualization of algebraic surfaces in three-dimensional

space using ray tracing algorithm. This algorithm makes it possible to reduce the

problem to solving a series of algebraic equations of a single variable for each pixel

and the main task is to choose the most appropriate and the fastest method. It is shown

that the Dekker-Brent method allows to save computation time for certain types of

surfaces in comparison with commonly used Chord (Regula Falsi) method. The

software, which visualizes algebraic surfaces with the control of intermediate

computations, was developed

Introduction

The problem of visualization of data (i.e. plotting of a three-dimensional image of

an object on computer monitor) of scientific investigations has always attracted

substantial attention of researchers (see, e.g., [1, 5] and the references therein). In the

course of a study a researcher may face with a problem of visualization of different

types of data. Sometimes these data can be represented as mathematical functions. In

this case visualization techniques depends crucially on a way a function is defined –

explicit, implicit or parametric – and on the number of independent variables.

Visualization of an implicitly defined surface (given by an equation of the form

0),,(zyxf) is quite a commonly arose task in computational mathematics.

Nowadays several algorithms are available.

One of these algorithms was written by Henderson [7]. Given a point of an

implicitly defined surface with full rank Jacobian, the implicit function theorem

guarantees that there exists a bijection from some neighborhood in the tangent space

onto the surface. Starting from this point on the surface, Henderson’s algorithm

computes this bijective mapping from a small elliptic region L of the tangent space

using multiple applications of Newton’s method. Then the algorithm picks a point on

the boundary of the image of L and computes the mapping onto a small neighborhood

of this point. Since the point lies on the boundary of the previously computed region,

this mapping always gives new information about the desired surface. A limitation of

this algorithm is that it cannot process singular points (i.e. points with degenerated

Jacobian).

Another algorithm is called "Marching Cubes" and described in the book by Angel

[1]. The ground principle of this algorithm is a spatial subdivision into a series of

small cubes. The algorithm tests the corner points of each cube and assigns its status

("+" or "–") depending on the sign of the function f at this point. Then it replaces the

cube with an appropriate set of polygons which approximate the surface under

construction. Every cube has 25628
 possible combinations of corner status. By [1]

the original 256 combinations of corner status can be resolved down to a total of 15

 Visualization of Algebraic Surfaces 233

combinations; with this number it is easy to create pattern polygon sets. The union of

all the polygons generated will be an approximation of the desired surface. This

method is convenient and mainly applies in the case when one recovers a surface from

a discrete data array.

The third algorithm is known as the ray tracing (see, e.g., Hill [5] or Angel [1]).

This is a powerful general tool for rendering surfaces. The key point of this algorithm

is as follows. Rays of light are traced from an eye back through a screen into a scene.

This means that we start from the eye or camera and trace the ray through a pixel of

the screen into the scene and determine whether it intersects any object in the scene or

not. In other words, the major task is to find out what does the eye sees though every

pixel of the screen.

From the computational point of view the main problem arising in an application of

the ray tracing is to find ray-object intersection. The solution of this problem highly

depends on the class of the surfaces one deals with. Nowadays ray tracing algorithm is

used to visualize prisms and surfaces of revolution [6], algebraic [4] and fractal [6]

surfaces. On the basis of this algorithm works are underway towards the visualization

of other types of objects (see [5]).

This paper deals with visualization of a class consisting of implicit algebraic

surfaces in three-dimensional space, i.e. the surfaces given by an equation of the form

0),,(zyxP , where P is polynomial with real coefficients. Due to the idea of ray

tracing algorithm instead of this equation we can consider the equation of intersection

between the ray and the surface which can be transformed to the algebraic equation

0)(* tP , where)(* tP is the polynomial of a single variable constructed from P .

Highly developed and numerous methods for solving of algebraic equations are

available (see, e.g., [3, 10, 11, 13]). And the main task is to choose the most

appropriate and the fastest method. In this paper we use Dekker-Brent method (see,

e.g., [3, 10, 11]). As our computations show, it makes possible to save computation

time for certain types of surfaces in comparison with Chord (Regula Falsi) method

(see, e.g., [10, 11, 13]) used by Hanrahan in [4].

1. Ray Tracing

This section deals with the ray tracing algorithm and its application to visualization

of implicit surfaces. The particularies of this algorithm are explained in details.

1.1. Algorithm. Consider a screen (see Fig. 1) as a two-dimensional array of pixels

in the space. A pixel is a rectangle-shaped unit which may be assigned only one color

at a time and its color is the color of the light ray that passes from the object, though

that pixel, into the eye. Ray is a theoretically infinite semi-line used for modeling a

thin beam of light which starts in one point and extends in one direction. The

algorithm starts by shooting rays from the eye through each pixel of the screen,

determining all the objects that intersect the ray, and finding the nearest of those

intersections for each ray. To find ray-object intersections we must put the parametric

representation for the ray into the equation for the object and determine whether there

exists a real solution of the equation obtained. If this solution exists then there is an

intersection and we must choose the closest point of intersection (e.g. point H on

Fig. 1). The algorithm shoots several rays from this point of intersection in order to

234 Gennadiy Chuyeshov

see (i) what objects are reflected at that point; (ii) what objects may be seen through

this point; and (iii) which light sources are directly visible from that point. These

additional rays are called secondary rays as distinct from the original, primary ray.

The secondary rays which are sent towards the light sources to determine if any object

occludes the intersection point are called shadow rays. On Fig. 1 one can see a

primary ray sent from point E through the screen into the scene where it intersects

Object 1 at point H . There are also two shadow rays sent from point H to the light

sources 1L and 2L .

Figure 1. Ray Tracing.

It should be noted that it is more correct to refer to ray tracing algorithm as

backward ray tracing algorithm. The point is that light rays, in fact, travel from light

sources to an eye, but not from the eye of a viewer to the light source as it is assumed

in the ray tracing algorithm. However we will neglect this difference and will use term

"ray tracing" in the description of the method of following light from an eye to a light

source.

1.2. Rays. As it was stated above a ray is an infinite semi-line used for modeling a

thin beam of light which starts in one point and extends in one direction. Thus to

describe a ray we can use the following parametric representation

() ,

() ,

() ,

s x

s y

s z

x t x d t

y t y d t

z t z d t

 (1)

 Visualization of Algebraic Surfaces 235

where),,(sss zyx are coordinates of the point 1H which is the starting point of the

ray,),,(zyx ddd are coordinates of the unit vector a which is the direction of the ray

and t is a positive parameter (see Fig. 1).

1.3. Implicit Surfaces. Let f be a continuous scalar function defined on a domain

3D . The implicit surface S generated by the function f is the locus of points at

which the function takes on the value zero, i.e.

() () 0S x y z D f x y z (2)

As mentioned in the previous subsection to find a ray-surface intersection we must

put the parametric representation for the ray, namely (1), into the equation for the

surface, namely 0),,(zyxf . This yields the following equation

(, ,) 0s x s y s zf x d t y d t z d t (3)

with respect to a single variable t . Thus on the semi-axis we have the equation

() 0,g t t (4)

where),,()(tdztdytdxftg zsysxs .

The next step is to determine whether there exists a root of equation (4), because if

there are no real roots of this equation then the ray does not intersect the surface. It is

natural to restrict the visualization of a surface to some volume which presents a part

of the real space (this volume is user-defined and lies behind the screen). In further

considerations we call this volume as extent. Here two types of the extents are

involved: a parallelepiped and a sphere. As these extents are convex, a ray may

intersect any of them through an interval only and it is quite easy to calculate the end

points of this interval, int and outt where outin tt0 . Surely, the interval],[outin tt

depends on the parameters of the ray),,,,,(zyxsss dddzyx . For every ray we first

check whether it intersects the extent and if it does, we then determine int and outt .

The task is now to check whether this ray intersects the surface. If the ray intersects

the surface, then the parameter 0t of the intersection point lies between int and outt ,

i.e., outin ttt 0 .

Assume that],[},...,{ 1 outink tttt are roots of equation (4). It is clear that to

visualize the surface we should find a ray-surface intersection which possesses the

properties (i) it is situated behind the screen and (ii) it is closest to the screen. The

intersection which satisfies these properties corresponds to the smallest solution of (4)

from the interval],[outin tt , i.e.,

i
ki
tt

...1
min min .

Having found this root we can calculate the coordinates),,(000 zyx of the point on

the surface by putting this root into equation (1) of the ray. This, in turn, allows us to

find the surface normal vector at this point by the following formula

0 0 0 0 0 0 0 0 0 0 0 0() () () ()
f f f

f x y z x y z x y z x y z
x y z

n

236 Gennadiy Chuyeshov

This normal vector is engaged in calculation of intensities of the color components at

the point),,(000 zyx .

2. Algebraic Surfaces

As it was mentioned in the introduction an algebraic surface is the surface given by

an equation of the form

(, ,) 0.P x y z (5)

where P is a polynomial with real coefficients. It can be written as

0 0 0

()
n m l

i j k

ijk ijk

i j k

P x y z a x y z a (6)

where n m l d and deg()d P is the degree of the polynomial P . Thus

equation (5) has the following form

0 0 0

0
n m l

i j k

ijk

i j k

a x y z (7)

After substitution of the parametric representation (1) for the ray into (6) we obtain the

polynomial

0 0 0 0

() () () ()
n m l d

i j k i

ijk s x s y s z i

i j k i

P t a x d t y d t z d t p t (8)

of a single variable t with real coefficients ip . Thus from (7) we get the equation

0

0 []
d

i

i in out

i

p t t t t (9)

where []in outt t is the ray-extent intersection interval.

According to previous section the problem is now to find mint , i.e. to find the

smallest root of equation (9) on the specified interval. We solve this problem in two

steps:

1. Root Isolation. This step allows us to find an interval (if it exists), where mint is

isolated, i.e. an interval, where equation (9) has the only root mint .

2. Root-Finding is calculates a prescribed approximation of mint in an isolating

interval (provided this interval exists and we have found it).

2.1. Root Isolation. To isolate the root we involve Descartes' Sign Rule [2] – a

method of determining the maximum number of positive real roots of a polynomial.

The idea of this method is as follows.

Let 0()na a … a be a sequence of real numbers and let 0()ma a … a be the

subsequence of non-zero elements of a . Then the number var()a of variations in a

is the number of integers i such that 0 i m and 1 0i ia a .

Let
0

()
n i

ii
A x a x be a real polynomial. It is uniquely determined by a string

a of its coefficients 0 na … a . We define var()A as var()a .

 Visualization of Algebraic Surfaces 237

Descartes’ Sign Rule asserts that the number of positive real roots (taking into

account their multiplicity) of a real polynomial A is equal to var() 2A k , where k

is a non-negative integer. In other words, a number of allowable roots can be var()A ,

var() 2A , var() 4A and so on. We emphasize that this rule is applicable on the

positive semi-axis.

In the implementation of Descartes’ Sign Rule in our problem we should first

transform the polynomial P to another one, which defined on , but not on

[]in outt t . Below for the sake of simplicity we denote ina t , outb t .

We first consider the polynomial
(1) () (())A x P x b a a

If 1 k… are the roots of P such that []i a b for 1 i k , then

1
1

k
k

aa
…

b a b a

are the roots of
(1)A from the interval [0 1]. In order to avoid the consideration of the

roots which are greater than one we further transform
(1)A into the polynomial

(2) (1) 1
() (1)

1

nA x x A
x

It is easy to see that 1() ()la b a … a b a are the roots of P from the semi-

interval (]a b if and only if
1 1

1 1 1l… are the positive real roots of
(2)A .

We consider the following cases.

1. The case when
(2) 0Avar . In this case according to Descartes’ Sign Rule

there is no positive roots of
(2)A . Hence there are no roots of P on []in outt t . It

means that the ray does not intersect the surface.

2. The case when
(2) 1Avar . We obviously have a single positive root of

(2)A ,

which implies that P has only one root on []in outt t .

3. The case when
(2) 2Avar . We cannot determine the exact number of roots,

but we can bisect []in outt t and consider two subintervals separately. Since we need

the smallest root we can apply this technique to the same polynomial, but on the left

subinterval first, and only if there are no roots we can switch to the right one.

Thus after a number of steps we can determine whether there exist roots of P in

[]in outt t and if they exist, find an interval containing the smallest one.

2.2. Root-Finding. To find a prescribed approximation of mint we use the Dekker-

Brent method as it was described in [3, 10, 11]. The Dekker-Brent method combines

the bisection and some more advanced root-finding algorithm (either quadratic

interpolation or secant). On each step this method operates with three abscissas a , b
and c , where

b is the latest and the closest approximation of the root;

a is the previous approximation;

238 Gennadiy Chuyeshov

c is either previous or even an older approximation (it is possible that a c).

Using the values of the polynomial in a , b and c and involving either the inverse

quadratic interpolation method1 (if a c) or the secant method (when a c), we

obtain an approximation b of the root.

The key of the Dekker-Brent method is that we take b as the next approximation

of the root only if the following criteria hold:

3 1
and

4 2
b b c b b b b a

Otherwise instead of b we take 1
2
()b a following the bisection method. Then

we take new b b , a b and c we keep the same if () () 0P c P b otherwise

we take c a . We stop our process when

() or 4 max ,1mP b c b b

where m is the machine precision and m is the prescribed tolerance. Ideally, to

find the best approximation for the root we should take m , but in our case we

choose the tolerance empirically basing on the quality of image.

As it is mentioned in [3, 10, 11] numerous computer experiments have shown that

Dekker-Brent method has a faster convergence in comparison with the customary

methods. The point is that this method combines the sureness and the universality of

the standard bisection method with relatively fast convergence of the secant or the

quadratic interpolation method. Our own comparative computations (see Fig. 2) have

shown that the Dekker-Brent method in most cases works faster then the Regula Falsi2

(false position) and Bisection method. In our computations we have measured how

much time3 did it take the program to build the preview4 image of the surface using

three different methods. Analysis of the table on Fig. 2 shows that Dekker-Brent

method allows us to save up to 1-2% of computation time in comparison with Regula

Falsi method and up to 2-3% in comparison with Bisection method. Moreover, it is

well-known (see, e.g. [10]) that Regula Falsi can sometimes be fooled. The following

computational experiment was performed. A surface which is defined by 10th degree

polynomial (Barth Decic [14], see Fig. 13) was built using three different methods:

Dekker-Brent, Bisection and Regula Falsi. The 1000 iteration threshold was set. If the

number of iterations exceeds this threshold the execution of calculations is terminated

unless required accuracy (
610) is reached. As a result of this experiment the image

built using Regula Falsi method had defects in some regions (cf. Fig. 3 and Fig. 4).

However, these defects were detected neither in other two images nor in the image

from [14]. The point is that in the course of calculation polynomials of the form

1 Inverse interpolation is a convenient tool in root-finding procedures because it leads to the

explicit formula for the root (to obtain the root all we need is to calculate the value of
interpolation polynomial at zero).
2 In Russian mathematical literature this method is known as the Chord method (see, e.g.,

[13]).
3 One should bear in mind that the time strictly depends on the power of the CPU which has

been used for the computations. In our case it was Intel Celeron CPU 1133 MHz.
4 Preview image is an image visualized without illumination (cf. Fig. 6 and Fig. 7).

 Visualization of Algebraic Surfaces 239

represented on Fig. 5 arises. It is known [10] that for this kind of polynomials Regula

Falsi requires too many iterations and it looks that in our case 1000 iterations is not

enough for Regula Falsi.

Thus Dekker-Brent method is more appropriate for visualization of algebraic

surfaces in comparison with Bisection and Regula Falsi methods.

Surface Bisection Method
Chord Method

(Regula Falsi)

Dekker-Brent

Method

Barth Sextic (Fig. 9) 7m 44s (464s) 7m 37s (457s) 7m 37s (457s)

Cusp Catastrophe

(Fig. 10)
1m 55s (115s) 1m 54s (114s) 1m 54s (114s)

Torus (Fig. 11) 4m 18s (258s) 4m 17s (260s) 4m 15s (255s)

Pillow/Tooth Object

(Fig. 12)
1m 56s (116s) 1m 55s (115s) 1m 54s (114s)

Bernoulli

Lemniscate
5

(see, e.g., Fig. 6 or 7)

4m 08s (248s) 4m 07s (247s) 4m 05s (245s)

Tanglecube (Fig. 14) 4m 03s (243s) 4m 01s (241s) 3m 59s (239s)

Figure 2. Comparative Computations. (Conditions: resolution is 1024 768 and

antialiasing is on)

Figure 3. Dekker-Brent Method. Figure 4. Chord (Regula-Falsi) Method.

3. Software

To test and put to practical use described above algorithms the following software

was developed. The programming language used for the development of these

programs was C++ (see, e.g., [12]). These programs were built using Microsoft Visual

C++ .NET 2003.

3.1. RAY. This program implements the algorithms described in Sections 1 and 2.

To input the surface into to the program we need to represent it in form (6). In other

words, input data looks like a sequence of vectors

0, 0, 0
, , , ,

i j k d

ijk
i j k

i j k a (10)

5 The surface defined by the equation

2 2 2 2 2 2 2 2
() 2 () 0, 2.7.x y z a x y z a

240 Gennadiy Chuyeshov

where each vector corresponds to the term
i j k

ijka x y z in the expression (6). It must be

mentioned that additionally to the equation of the surface we input such data as extent

parameters, material of the surface (i.e. its texture and optical properties), positions,

constraints and intensities of the light sources, position of the viewer, position and

constraints of the screen and so on.

0

500

1000

1500

2000

3.4 3 .6 3.8 4 4.2 4.4 4.6 4 .8 5 5.2

–2

0

2

4

6

4.8 4 .9 5 5 .1 5.2

Figure 5. Polynomials arising in the course of the ray tracing of a Barth Decic [14].

According to Section 2 using (10) the algorithm constructs a polynomial ()P t for

each ray. Either to construct this polynomial or to carry out the transformations of the

polynomial to isolate the root as it was described in Subsection 2.1 this program

involves appropriate symbolic methods. All these symbolic methods are constructed

from the following operations implemented in this program: the sum and the product

of two univariate polynomials and the calculation of the coefficients of binomials of

the form () ()n

nB t at b . Then using the ray tracing algorithm and the numerical

methods described in Subsections 2.1 and 2.2 the program builds an image of the

surface on the screen.

This image can be saved as Windows Bitmap, the standard Microsoft Windows

format for raster images. User also can choose either to perform the computation of

illumination or visualize the surface without performing these computations. To

understand this feature compare Fig. 6, where the computation of illumination were

 Visualization of Algebraic Surfaces 241

not performed (preview mode) with Fig. 7, where performed the full set of

computations. It should be noted that computation of illumination takes a lot of time:

approximately 100 times more for the image on Fig. 7, than for the image on Fig. 6.

We have such difference because we need to compute the shadows and it is the most

time-consuming part of the process of computation. The point is that to compute the

shadows we need to shoot 50 secondary rays towards the light sources from each

visible reference point on the scene. In our model we have two area light sources

which are represented by uniformly distributed point light sources (25 points in each

area light source). Moreover we need to compute the intensities of the color

components of the reflected light for each visible reference point on the scene.

Figure 6. Preview Mode On. Figure 7. Preview Mode Off.

 Thus the preview mode is very useful feature because if we are carrying out an

intermediate visualization to adjust the parameters of the surface or an extent the

preview image is informative enough to make a conclusion so there is no need to

perform the computation of the illumination model.

a b

Figure 8. Polynomials arising in the course of the ray tracing of a torus.

242 Gennadiy Chuyeshov

3.2. ZEROFIND. This program is an additional tool developed for analyzing and

testing the numerical methods we have used. Given an equation of the surface

(sequence of vectors), a ray and an interval],[outin tt , this program plots the graph of

the
*()P t on],[outin tt , then calculates an isolating interval for mint using described

above algorithm, marks the end points of this interval on the axis and, finally, marks

an approximation of mint obtained via Dekker-Brent root-finding algorithm.

This program is very useful because for each ray we can either to see how the plot

of the
*()P t looks like or to trace the behavior of the numerical methods (root

isolating and root-finding). We use this tool to check the correctness of our

computations on intermediate steps. This checking is necessary because a "jump" of

the smallest root to another is possible for some directions of rays. For instance, in the

course of the ray tracing of a torus may appear the picture shown on Fig. 8.

Our trial computations show that if we apply Newton’s method to the polynomial

shown on Fig. 8(a), from the point 0x , then we can "catch" the root 2x instead of the

smallest root 1x . This is not the case for the polynomial on Fig. 8(b).

4. Images

Equations for visualization of the surfaces in Figures 9, 12, 13 and 14 are taken

from [8], [9], [14] and [15] respectively. All computations were performed on Intel

Celeron CPU 1133 MHz.

Figure 9. Barth Sextic [8]

2 2 2 2 2 2 2 2 2
4()()() (1 2)

2 2 2 2 5 1
(1) 0, 0 618

2

G x y G y z G z x G

x y z G …

Computation time: 10h 42m 06s.

Figure 10. Cusp Catastrophe
3 0.z xz y

Computation time: 3h 05m 40s.

 Visualization of Algebraic Surfaces 243

Figure 11. Torus
2 2 2 2 2 2

2 2 2

()

4 () 0, 2.5, 0.9.

x y z r a

a r z a r

Computation time: 5h 31m 13s.

Figure 12. Pillow/Tooth Object [9]
4 4 4 2 2 2() 0x y z x y z

Computation time: 3h 05m 33s.

Figure 13. Barth Decic [14]

Computation time: 43h 09m 42s.

Figure 14. Tanglecube [15]
4 2 4 2 4 2

5 5 5 11.8 0.x x y y z z

Computation time: 5h 39m 57s.

244 Gennadiy Chuyeshov

REFERENCES

1. Angel E., Interactive Computer Graphics. A Top-Down Approach with OpenGL,

2nd ed. Addison-Wesley, Reading, MA, 2000.

2. Collins G. E., Akritas A. G., Polynomial Real Root Isolation Using Descarte’s

Rule of Signs. Proceedings of the 1976 ACM Symposium on Symbolic and

Algebraic Computations, pp 272-275, 1976.

3. Forsythe G. E., Malcolm M. A., Moler C. B., Computer Methods for

Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ, 1977.

4. Hanrahan P., Ray Tracing Algebraic Surfaces. Computer Graphics, 17(3), pp 83-

90, 1983 (Proceedings of the SIGGRAPH 83).

5. Hill F. S., Computer Graphics Using OpenGL, 2nd ed. Prentice Hall PTR, Upper

Saddle River, NJ, 2001.

6. Kajiya J. T., New Techniques for Ray Tracing Procedurally Defined Objects.

ACM Transactions on Graphics, 2(3), pp 161-181, 1983.

7. Mike Henderson's Implicit Surface Algorithm.

http://www.geom.uiuc.edu/docs/forum/henderson/

8. Nordstrand T., Barth Sextic. http://www.uib.no/People/nfytn/sexttxt.htm.

9. Nordstrand T., Surfaces. http://www.uib.no/People/nfytn/surfaces.htm.

10. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical

Recipes in C. The Art of Scientific Computing, 2nd ed. Cambridge University

Press, Cambridge, 1992.

11. Quarteroni A., Sacco R., Saleri F., Numerical Mathematics. Springer-Verlag,

Berlin, Heidelberg, New York, 2000.

12. Stroustrup B., The C++ Programming Language, 3rd ed. Addison-Wesley,

Reading, MA, 1997.

13. Turchak L. I., Osnovy chislennyh metodov (The Priciples of the Numerical

Methods). Nauka, Moscow, 1987.

14. Weisstein E., "Barth Decic" from MathWorld – A Wolfram Web Resource.

http://mathworld.wolfram.com/BarthDecic.html.

15. Weisstein E., "Tanglecube" from MathWorld – A Wolfram Web Resource.

http://mathworld.wolfram.com/Tanglecube.html.

