
  35 

Вісник Харківського національного університету 

Серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи 

управління» 

УДК 519.713 № 780, 2007, с.35-48  
 

On development and implementation of a parallel 

Binary Decision Diagram package 

S. M. Bogomolov, G. M. Zholtkevych 
V. N. Karazin Kharkiv National University, Ukraine 

Efficient manipulation of Boolean functions is an important component of many 

computer-aided design and verification tasks. An efficient parallel package for 

manipulating Boolean functions based on the reduced, ordered, binary decision 

diagram (ROBDD) representation has been developed. In this paper we consider main 

algorithms and data structures which are used in this package. 

 

Introduction 
Binary decision diagrams (BDD) are used in a wide variety of applications such as 

circuit verification [1], combinatorial problems[2] and other techniques where it is 

necessary to have an efficient means of representing and manipulating Boolean 

functions. Many of the current non-parallel BDD packages are based on the depth-first 

if-then-else (ite) algorithm [3]. Specialized programming techniques, such as 

attributed edges [4], dynamic variable reordering [5] and garbage collection [3], are 

often utilized in applications dealing with large BDD structures. However, these 

techniques are not always sufficient. In many applications of BDDs one should deal 

with very large data structures and that is why we must develop even more efficient 

algorithms. One of the ways to do this is to use parallel algorithms. In this work we 

consider algorithms and data structures for constructing and manipulating Binary 

Decision Diagrams which uses benefits of multiprocessor systems. Then we will be 

able to use computational resources of a few processors. 

To date, parallel BDD implementations that have been developed include packages 

for a distributed shared memory (DSM) platform [6] and for vector processors [7]. 

This thesis describes a different type of parallel BDD library package developed for 

use in shared memory multi-processor systems. 

Often, parallelism may be extracted from a particular algorithm in several different 

ways. For instance, [5] explores parallelism in breadth-first BDD traversals. In [8], 

parallelism in operation sequences is examined. This thesis explores parallelism in 

depth-first BDD traversals. Package library functions utilize multiple processors to 

perform operations on the BDD. These library functions are similar to the non-parallel 

versions on which they are based. Each processor executes its own thread. So the 

package simultaneously executes multiple threads of computation on a BDD. These 

techniques apply to a wide range of different BDD applications. 

In Fig. 1 the typical process of verification is shown. In this work we consider the 

process of constructing Binary Decision Diagram on the basis of the System Model. In 

the future we would like to develop a verification environment which would integrate 

the results of this work. 



36 S. M. Bogomolov, G. M. Zholtkevych  

Other aspects of BDD techniques and applications see in [9-14]. Among last works 

concerning our topic we mention [15-21]. 

 

 
Fig. 1. System Verification Process 

 

1 Binary Decision Diagrams 

Let 0 1,x y y→  be if-then-else operator (ITE operator) defined by 

( ) ( )0 1 0 1,x y y x y x y→ = ∧ ∨ ∧  

hence, 0 1,t t t→  is true if t  and 0t  are true or if t  is false and 1t  is true. We call t  the 

test expression. All operators can easily be expressed using only the if-then-else 

operator and the constants 0 and 1. Moreover, this can be done in such a way that all 

tests are performed only on (un-negated) variables and variables occur in no other 

place. Hence this operator gives rise to a new kind of normal form. For example, x¬  

is ( )0,1x → , x y⇔  is ( ) ( )1,0 , 0,1x y y→ → → . Since variables must only occur in 

tests the Boolean expressions x  is represented as 1,0x → . 

 

Table Name Expression Equivalent form 

0000 0 0 0 

0001 AND (F,G) F G⋅  ( ), ,0ite F G  

0010 F>G F G⋅  ( ), ,0ite F G  

0011 F F  F  

0100 F<G F G⋅  ( ),0,ite F G  

0101 G G  G  

0110 XOR (F,G) F G⊕  ( ), ,ite F G G  

0111 OR (F,G) F G+  ( ),1,ite F G  

1000 NOR (F,G) F G+  ( ),0,ite F G  

1001 XNOR (F,G) F G⊕  ( ), ,ite F G G  

1010 NOT (G) G  ( ),0,1ite G  

1011 F ≥ G F G+  ( ),1,ite F G  

1100 NOT (G) F  ( ),0,1ite F  

1101 F ≤ G F G+  ( ), ,1ite F G  

1110 NAND (F,G) F G⋅  ( ), ,1ite F G  

1111 1 1 1 
Fig. 2. All two variable functions described using ITE 
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Definition 

 An If-then-else Normal Form (INF) is a Boolean expression built entirely from 

the if-then-else operator and the constants 0 and 1 such that all tests are performed 

only on variables. 

 If we by [0 / ]t x  denote the Boolean expression obtained by replacing x  with 0 in 

t  then it is not hard to see that the following equivalence holds: 

[1/ ], [0 / ]t x t x t x= → . 

 This is known as the Shannon expansion of t  with respect to x . This simple 

equation has a lot of useful applications. The first is to generate INF from any 

expression t . If t  contains no variables it is either equivalent to 0 or 1 which is an 

INF. Otherwise we form the Shannon expansion of t  with respect to one of the 

variables x  in t . Thus since [0 / ]t x  and [1/ ]t x  both contain one less variable than t , 

we can recursively find INFs for both of these; call them 0t  and 1t . An INF for t  is 

now simply 1 0,x t t→ . 

 We have proved: Any Boolean expression is equivalent to an expression in INF. 

Example 

 Consider the Boolean expression ( ) ( )1 1 2 2t x y x y= ⇔ ∧ ⇔ . If we find an INF 

of t  by selecting in order the variables 1 1 2 2, , ,x y x y  on which to perform Shannon 

expansions, we get the expression 

1 1 0,t x t t= → ; 0 1 000,t y t= → ; 1 1 11,0t y t= → ; 00 2 001 000,t x t t= → ; 11 2 111 110,t x t t= → ; 

000 2 0,1t y= → ; 001 2 1,0t y= → ; 110 2 0,1t y= → ; 111 2 1,0t y= →  

Fig. 3 shows the expression as a tree. Such a tree is called a decision tree. 

 
Fig. 3. A decision tree for ( ) ( )1 1 2 2x y x y⇔ ∧ ⇔ .  

Dashed lines denote low-branches, solid lines high-branches. 

 

 A lot of expressions are easily seen to be identical, so it is tempting to identify 

them. For example, instead of 110t  we can use 000t  and instead of 111t  we can use 001t . 
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If we substitute 000t  for 110t  in the right-hand side of 11t  and also 001t  for 111t , we in 

fact see that 00t  and 11t  are identical, and in 1t  we can replace 11t  with 00t . 

 If we in fact identify all equal subexpressions we end up with what is known as a 

binary decision diagram (a BDD). It is no longer a tree of Boolean expressions bt a 

directed acyclic graph (DAG). 

 Applying this idea of sharing, t  can now be written as: 

1 1 0,t x t t= → ; 0 1 000,t y t= → ; 1 1 00 ,0t y t= → ; 00 2 001 000,t x t t= → ; 000 2 0,1t y= → ; 

001 2 1,0t y= →  

 Each subexpression can be viewed as the node of a graph. Such a node is either 

terminal in the case of constants 0 and 1, or non-terminal. A non-terminal node has a 

low-edge corresponding to the else-part and a high-edge corresponding to the then-

part. See Fig. 4. Notice, that the number of nodes has decreased from 9 in the decision 

tree to 6 in the BDD. It is not hard to imagine that if each of the terminal nodes were 

other big decision trees the savings would be dramatic. Since we have chosen to 

consistently select variables in the same order in the recursive calls during the 

construction of the INF of t , the variables occur in the same orderings on all paths 

from the root of the BDD. In this situation the binary decision diagram is said to be 

ordered (an OBDD). Fig. 3 shows a BDD that is also an OBDD. 

 
Fig. 4. A BDD for ( ) ( )1 1 2 2x y x y⇔ ∧ ⇔  with ordering 1 1 2 2x y x y< < < .  

Low-edges are drawn as dotted lines and high-edges as solid lines. 

 

 A Binary Decision Diagram (BDD) is a rooted, directed acyclic graph with 

• one or two terminal nodes of out-degree zero labeled with 0 or 1, and 

• a set of variable nodes u  of out-degree two. The two outgoing edges are given 

by two function ( )low u  and ( )high u . In pictures, these are shown as dotted 

and solid lines, respectively. A variable ( )var u  is associated with each 

variable node. 

 A BDD is Ordered (OBDD) if on all paths through the graph the variables respect 

a given linear order 1 2 nx x x< < <K . An (O)BDD is Reduced (R(O)BDD) if 

(uniqueness) no two distinct nodes u  and v  have the same variable name and low- 

and high- successor, i.e., 
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• ( ) ( )var varu v= , ( ) ( )low u low v= , ( ) ( )high u high v=  implies u v= , and 

• (non-redundant tests) no variable node u  has identical low- and high-

successor, i.e., ( ) ( )low u high u≠ . 

 ROBBDs have some interesting properties. They provide compact 
representations of Boolean expressions, and there are efficient algorithms for 

performing all kinds of logical operations on ROBBDs. They are based on the crucial 

fact that for any function : n
f Β → Β  there is exactly one ROBDD representing it. 

This means, in particular, that there is exactly one ROBDD for the constant true (and 

constant false) function on nΒ : the terminal node 1 (and 0 in case of false). Hence, it 

is possible to test in constant time whether an ROBBD is constantly true of false. 

(Recall that for Boolean expressions this problem is NP-complete.) 

 To make this claim more precise we must say what we mean for an ROBDD to 

represent a function. First, it is quite easy to see how the nodes u  of an ROBDD 

inductively defines Boolean expressions u
t : A terminal node is a Boolean constant. A 

non-terminal node marked with x  is an if-then-else expression where the condition is 

x  and the two branches are the Boolean expressions given by the low- or high-son, 

respectively: 
0

0t = ; 1
1t = ; ( ) ( ) ( )

var ,
high u low uu

t u t t= → , if u  is a variable node. 

 Moreover, if 1 2 nx x x< < <K  is the variable ordering of the ROBDD, we 

associate with each node u  the function u
f  that maps ( )1 2, , , n

nb b b ∈ ΒK  to the truth 

value of 1 1 2 2[ / , / , , / ]u

n nt b x b x b xK . We can now state the key lemma: 

 

Lemma (Canonicity lemma) 

 For any function : n
f Β → Β  there is exactly one ROBDD u  with variable ordering 

1 2 nx x x< < <K  such that ( )1, ,u
nf f x x= K . 

 

2 Constructing and Manipulating ROBDDs 
 Due to enormous size of systems to be verified efficient algorithms and data 

structures shall be developed. Let us consider main algorithms and data structures for 

manipulating Binary Decision Diagrams. 

 

2.1 Data Structures 

 

Hash Table 
 A hash table associates a value with a key. A hash function applied to the key 

selects which of N  linked lists the key, value pair is stored. The load factor of a hash 

table is defined /n Nα = , where n  is the number of keys stored in the table. 

 

Computed table 

 A memory function for the function F  is a table of values ( )( ),x F x  that the 

function has already computed. If F  is called with argument x  again, ( )F x  is 
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returned without any computation. We use a memory function to improve the 

performance of ite . We call the memory function for ite  the computed-table (cache 

table). The computed-table maps three nodes F , G , H  to the result node 

( ), ,ite F G H  once this result has been computed. We implement the computed-table 

using a hash table. 

 

Uncomputed table 

 The uncomputed table is a hash table used to keep track of ongoing computations. 

The uncomputed table is necessary because results in an ongoing recursive BDD 

computation are almost likely not immediately available. For instance, the current 

thread of computation may be temporally stopped because it requires a result from 

another thread. Thus, it is necessary to keep a record of having started a computation 

to prevent it from being started multiple times.  

 The uncomputed table provides a forward mechanism that allows threads of 

computation to send the information about the completion of computation to other 

threads waiting for this event. 

 Functions also store their returning value in this table. 

 

Hash-based cache 
 A hash-based cache is a hash table where collision chain is not used to resolve 

collisions. Instead, at insert time, any existing element at the particular array position 

is discarded and replaced with the new entry. At lookup time, if the element does not 

match the stored key, a cache miss occurs and no element is returned. 

 

Unique Table 
 As was already mentioned each node in the ROBDD represents a Boolean 

function, and is written using a capital letter, such as F , and can be denoted by the 

triple ( ), ,v G H , where v  is the top variable of F , G  is the node connected to the 1 

(or then) edge of F , and H  is the node connected to the 0 (or else) edge of F. 

 A hash table imposes a strong canonical form on the nodes in the ROBDD, so 

that each node in the ROBDD represents a unique logic function. Hence, this hash 

table is called the unique-table. 

 The unique-table maps a triple ( ), ,v G H  to an ROBDD node ( ), ,F v G H= . Each 

node in the ROBDD has an entry in the unique-table. Before a new node is added to 

the ROBDD, a lookup in the unique table determines if a node for that function 

already exists. If so, the existing node is used. Otherwise, the new node is added to the 

ROBDD and a new unique-table entry is made. By assumption, when we create a new 

node F , the nodes G  and H  will already obey the strong canonical form. Hence, the 

function F  exists in the ROBDD if, and only if, the triple ( ), ,v G H  is already in the 

unique table, thus maintaining the strong canonical form.  

 The unique table allows a single multi-rooted DAG to represent all of the user’s 

formulae simultaneously. 

 The relationship between a unique table and a cache table is shown in Fig. 5. 
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Fig. 5. Unique table and cache table 

 

Work Queue 
 The work queue facilitates parallel tree traversals and is the mechanism by which 

simultaneous threads of computation may be executed. It is an unordered, prioritized 

queue to which any thread may add tasks.  

 

Stack Frames 

 Some mechanism is required to temporarily store a portion of the recursive 

computation until it can be continued at a later time. In other words, threads 

continually process their work queue and do not wait for results from other processors. 

To meet these needs, a persistent data structure, the stack frame, was constructed so 

that threads could obtain the required information and perform steps of the 

calculations at their own convenience. 

 Each stack frame keeps state information necessary to complete that step of the 

computation. It points to the parent stack frame to which it can send its result. 

 

2.2 ITE Algorithm 

 

 The algorithm is based on Shannon’s decomposition theorem which states that 

v vF v F v F= ⋅ + ⋅  

Where vF  and vF  are F  evaluated at 1v =  and 0v =  respectively. Let ( ), ,F w T E=  

and assume v w≤ . Finding the cofactors of F  with respect to v  is trivial: vF F=  (if 

v w< ) or T  (if v w= ), and vF F=  (if v w< ) or E  (if v w= ). 

 The following recursive formulation is the key to computing ( ), ,ite F G H  for 

functions F , G , H  represented in ROBDD form. Let ( ), ,Z ite F G H=  and let v  be 

the top variable of F , G , H . Then, 

( ) ( )v v v v
Z v Z v Z v F G F H v F G F H= ⋅ + ⋅ = ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ =  
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( ) ( ) ( ) ( )( ), , , , , ,v v v v v v v v v v v v v vv F G F H v F G F H ite v ite F G H ite F G H= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ = =

( ) ( )( ), , , , , ,v v v v v vv ite F G H ite F G H=  

The terminal cases for this recursion are: ( ) ( ) ( )1, , 0, , ,1,0ite F G ite G H ite F F= = = . 

 With the assumption of constant lookup and insert in the tables, all operations in 

ite  take constant time. Observe that ite  can be called at most once for each 

combination of nodes in F , G , H , i.e., ( )O F G H⋅ ⋅  times. So the time 

complexity is ( )O F G H⋅ ⋅  [3]. In practice, the typical performance is closer to the 

size of the resulting function. 

 

Finally we present the ite  algorithm: 
 

Fill terminal cases in the computed table 

 

( ), ,ite F G H  

{ 

while (work queue for this thread is not empty) 

  { 

    Extract from queue F, G, H 

    Find a stack frame S corresponding to F, G, H 

    If (terminal case) 

      Write the result to the parent stack frame; 

    else if (computed-table has entry {F,G,H}) 

      Write the result to the parent stack frame 

    else 

    { 

      Let v be the top variable of {F,G,H} 

      Create stack frames H for ( ), ,v v vF G H  and L for 

      ( ), ,v v vF G H . Point H and L to their parent stack 

      frame S 

      if (S has computed results for low- and high-nodes) 

      { 

        T = high-node result from S 

        E = low-node result from S 

        if (T equals E) 

          Write T as the result to the parent stack 

          frame; 

        R = find_or_add_unique_table (v,T,E); 

        Insert_computed_table ({F,G,H}, R); 

        Delete ( ), ,F G H  from the uncomputed table 

        Write R as the result to the parent stack frame 

        and send notification to other pending stack 

        frames (in other words, add all the pending stack 

        frames to the work queue) 

      } 

      else 
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      { 

         if (S does not have a computed result for 

         the high-node) 

         { 

            if (uncomputed table does not have an entry 

            ( ), ,v v vF G H  ) 

            { 

              Choose thread with the shortest work 

              queue. Add ( ), ,v v vF G H  to this work queue 

            } 

            else 

            { 

               Add ( ), ,F G H  to the pending list of 

               ( ), ,v v vF G H  

            } 

         } 

         if (S does not have a computed result for 

         the low-node) 

         { 

            if (uncomputed table does not have an entry 

            ( ), ,v v vF G H  ) 

            { 

              Choose thread with the shortest work 

              queue. Add ( ), ,v v vF G H  to this work queue 

            } 

            else 

            { 

               Add ( ), ,F G H  to the pending list of 

               ( ), ,v v vF G H  

            } 

         } 

      } 

    } 

  } 

} 

 

2.3 Garbage Collection Process 

 Computers have limited memory and they run out of it quickly. To avoid this 

problem, nodes that are unnecessary should be removed. We named the procedure 

which performs this function garbage collection (GC). 

 Even if memory is not completely full, GC is very useful. A smaller number of 

nodes means faster operations on BDDs. However, some extra time is spent on GC. 

For an effective GC additional information about each node is needed. Unfortunately, 

this increases the usage of memory. Therefore, a more frequent GC, which is faster, is 

preferable. 
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 GC deletes all nodes which are not part of any formula. If the user wants, a 

complete formula can be removed, too. Internal nodes of other formulae must not be 

deleted by this operation. 

 Note that all records in the computed-table which contain bad nodes must be 

removed before deleting bad nodes from the unique-table. 

 Each node has a count of the number of other nodes and the number of user 

formulae that refer to it. A node with a reference count of 0 is called dead node. 

 When a formula is deleted, the reference count of the corresponding top node is 

decremented by 1. If the new reference count is 0, then the reference counts of 

successor nodes are recursively decremented. If any of them becomes a dead node, 

recursion continues there. 

 It can happen that an existing node which is already dead should be included into 

the formula. In this case the reference counts of this node and of all dead descendants 

are incremented by 1. In recursion it should be considered that all successors of a non-

dead node are non-dead nodes. 

 The procedure for GC removes all dead nodes. 

 
4 Experimental Results 

 Many problems in Electronic CAD (especially in the synthesis and test area) 

require the computation of the maximum clique in a graph. The BDD approach to this 

problem is based on using characteristic functions to represent sets of subsets. 

 Given a set of n  elements Q , and being { }0,1B = , any subset S Q⊆  can be 

easily mapped to a point in nΒ : each element iq Q∈  is represented by a Boolean 

variable ix  getting values in Β ; each combination of values for the variables 1, , nx xK  

identifies the subset of Q  composed by just the elements corresponding to the 

variables set to 1. Any set T  of subsets Q  can now be represented by a characteristic 

function : n
f Β → Β  which returns the value 1 iff its inputs 1, , nx xK  represent an 

element of T . 

 A Boolean expression can be defined for the characteristic function CCCf  of the 

set of all the Completely Connected Components (CCC) of a graph V . Denoting by n  

the number of vertices in V , and by 1, , nx xK  the Boolean variables associated with 

the vertices, the function : n

CCCf Β → Β  is defined as follows: 

 

( ) ( )1, ,CCC n i jf x x x x= ⋅∏K , 

 

where Π  denotes the logical and operator extended to all the missing edges ije  

between any two nodes iv , jv  in the graph. The function returns the value 1 iff the 

input is a CCC. 

 Once CCCf  has been computed, determining the maximum clique in the graph 

means finding the maximum-cost satisfying assignment for CCCf
, where the cost of 

each assignment is the number of variables set to 1 in it. Denoting by s  the number of 
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nodes of the BDD representing CCCf , this operation can be done with complexity 

( )O s . As s  is always much smaller than the worst case 2
n , the total cost of finding 

the MC with this method is the one for building the function CCCf . 

 

 
Fig. 6. A graph example 

 

As an example, let us consider the graph of Fig. 6. The function CCCf  is: 

1 2 1 3 1 1 3 1 2 2 3CCCf x x x x x x x x x x x= ⋅ = + ⋅ + ⋅ + + ⋅  

The maximum-cost satisfying assignment for such a function is 2 3 4x x x⋅ ⋅ ; the MC in 

the graph is thus composed by the vertices 2v , 3v  and 4v . 

 Monoprocessor system had Intel Pentium 4 2.4 GHz processor; 2-core system 

had Intel Core 2 Duo E6600 2.4 GHz processor and 4-core system had Intel Core 2 

Quad Q6600 2.4 GHz processor. All the systems were equipped with 2 GB RAM. The 

experimental results are shown in Fig. 7 and Fig. 8. 

 

 

Graph size Monoprocessor 

system (s) 

2-core system (s) 4-core system (s) 

10 2 1 <1 

50 58 37 25 

80 5401 3270 2026 

100 7430 4600 2801 

150 8501 5304 3257 

200 9275 5819 3516 

250 12285 8537 5212 

400 25341 15509 9410 
Fig. 7. Experimental results 
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Fig. 8. Graphical representation of the experimental results 

 

Summary 

 Efficient solutions on as to how to represent Boolean functions with ROBDD are 

shown. It is shown in detail how to parallelize the main algorithms for manipulating 

ROBDDs. Our representation uses If-Then-Else operator, computed and uncomputed 

tables, unique table and work queue. Data structures and algorithms are described in 

detail. The used algorithms are based on Shannon’s decomposition theorem. 

 A practical result of this research is a ROBDD programming package written in 

C. The package can be used as a foundation for various tasks: proof of correctness of 

combinatorial circuits, system verification, protocol validation, etc. 

 Summing up, this BDD package is an efficient and portable BDD package that 

demonstrates speed-up over optimized sequential code. It presents an excellent 

platform for further research. 
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