
 35

Вісник Харківського національного університету

Серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи

управління»

УДК 519.713 № 780, 2007, с.35-48

On development and implementation of a parallel

Binary Decision Diagram package

S. M. Bogomolov, G. M. Zholtkevych
V. N. Karazin Kharkiv National University, Ukraine

Efficient manipulation of Boolean functions is an important component of many

computer-aided design and verification tasks. An efficient parallel package for

manipulating Boolean functions based on the reduced, ordered, binary decision

diagram (ROBDD) representation has been developed. In this paper we consider main

algorithms and data structures which are used in this package.

Introduction
Binary decision diagrams (BDD) are used in a wide variety of applications such as

circuit verification [1], combinatorial problems[2] and other techniques where it is

necessary to have an efficient means of representing and manipulating Boolean

functions. Many of the current non-parallel BDD packages are based on the depth-first

if-then-else (ite) algorithm [3]. Specialized programming techniques, such as

attributed edges [4], dynamic variable reordering [5] and garbage collection [3], are

often utilized in applications dealing with large BDD structures. However, these

techniques are not always sufficient. In many applications of BDDs one should deal

with very large data structures and that is why we must develop even more efficient

algorithms. One of the ways to do this is to use parallel algorithms. In this work we

consider algorithms and data structures for constructing and manipulating Binary

Decision Diagrams which uses benefits of multiprocessor systems. Then we will be

able to use computational resources of a few processors.

To date, parallel BDD implementations that have been developed include packages

for a distributed shared memory (DSM) platform [6] and for vector processors [7].

This thesis describes a different type of parallel BDD library package developed for

use in shared memory multi-processor systems.

Often, parallelism may be extracted from a particular algorithm in several different

ways. For instance, [5] explores parallelism in breadth-first BDD traversals. In [8],

parallelism in operation sequences is examined. This thesis explores parallelism in

depth-first BDD traversals. Package library functions utilize multiple processors to

perform operations on the BDD. These library functions are similar to the non-parallel

versions on which they are based. Each processor executes its own thread. So the

package simultaneously executes multiple threads of computation on a BDD. These

techniques apply to a wide range of different BDD applications.

In Fig. 1 the typical process of verification is shown. In this work we consider the

process of constructing Binary Decision Diagram on the basis of the System Model. In

the future we would like to develop a verification environment which would integrate

the results of this work.

36 S. M. Bogomolov, G. M. Zholtkevych

Other aspects of BDD techniques and applications see in [9-14]. Among last works

concerning our topic we mention [15-21].

Fig. 1. System Verification Process

1 Binary Decision Diagrams

Let 0 1,x y y→ be if-then-else operator (ITE operator) defined by

() ()0 1 0 1,x y y x y x y→ = ∧ ∨ ∧

hence, 0 1,t t t→ is true if t and 0t are true or if t is false and 1t is true. We call t the

test expression. All operators can easily be expressed using only the if-then-else

operator and the constants 0 and 1. Moreover, this can be done in such a way that all

tests are performed only on (un-negated) variables and variables occur in no other

place. Hence this operator gives rise to a new kind of normal form. For example, x¬

is ()0,1x → , x y⇔ is () ()1,0 , 0,1x y y→ → → . Since variables must only occur in

tests the Boolean expressions x is represented as 1,0x → .

Table Name Expression Equivalent form

0000 0 0 0

0001 AND (F,G) F G⋅ (), ,0ite F G

0010 F>G F G⋅ (), ,0ite F G

0011 F F F

0100 F<G F G⋅ (),0,ite F G

0101 G G G

0110 XOR (F,G) F G⊕ (), ,ite F G G

0111 OR (F,G) F G+ (),1,ite F G

1000 NOR (F,G) F G+ (),0,ite F G

1001 XNOR (F,G) F G⊕ (), ,ite F G G

1010 NOT (G) G (),0,1ite G

1011 F ≥ G F G+ (),1,ite F G

1100 NOT (G) F (),0,1ite F

1101 F ≤ G F G+ (), ,1ite F G

1110 NAND (F,G) F G⋅ (), ,1ite F G

1111 1 1 1
Fig. 2. All two variable functions described using ITE

 On development and implementation of a parallel … 37

Definition

 An If-then-else Normal Form (INF) is a Boolean expression built entirely from

the if-then-else operator and the constants 0 and 1 such that all tests are performed

only on variables.

 If we by [0 /]t x denote the Boolean expression obtained by replacing x with 0 in

t then it is not hard to see that the following equivalence holds:

[1/], [0 /]t x t x t x= → .

 This is known as the Shannon expansion of t with respect to x . This simple

equation has a lot of useful applications. The first is to generate INF from any

expression t . If t contains no variables it is either equivalent to 0 or 1 which is an

INF. Otherwise we form the Shannon expansion of t with respect to one of the

variables x in t . Thus since [0 /]t x and [1/]t x both contain one less variable than t ,

we can recursively find INFs for both of these; call them 0t and 1t . An INF for t is

now simply 1 0,x t t→ .

 We have proved: Any Boolean expression is equivalent to an expression in INF.

Example

 Consider the Boolean expression () ()1 1 2 2t x y x y= ⇔ ∧ ⇔ . If we find an INF

of t by selecting in order the variables 1 1 2 2, , ,x y x y on which to perform Shannon

expansions, we get the expression

1 1 0,t x t t= → ; 0 1 000,t y t= → ; 1 1 11,0t y t= → ; 00 2 001 000,t x t t= → ; 11 2 111 110,t x t t= → ;

000 2 0,1t y= → ; 001 2 1,0t y= → ; 110 2 0,1t y= → ; 111 2 1,0t y= →

Fig. 3 shows the expression as a tree. Such a tree is called a decision tree.

Fig. 3. A decision tree for () ()1 1 2 2x y x y⇔ ∧ ⇔ .

Dashed lines denote low-branches, solid lines high-branches.

 A lot of expressions are easily seen to be identical, so it is tempting to identify

them. For example, instead of 110t we can use 000t and instead of 111t we can use 001t .

38 S. M. Bogomolov, G. M. Zholtkevych

If we substitute 000t for 110t in the right-hand side of 11t and also 001t for 111t , we in

fact see that 00t and 11t are identical, and in 1t we can replace 11t with 00t .

 If we in fact identify all equal subexpressions we end up with what is known as a

binary decision diagram (a BDD). It is no longer a tree of Boolean expressions bt a

directed acyclic graph (DAG).

 Applying this idea of sharing, t can now be written as:

1 1 0,t x t t= → ; 0 1 000,t y t= → ; 1 1 00 ,0t y t= → ; 00 2 001 000,t x t t= → ; 000 2 0,1t y= → ;

001 2 1,0t y= →

 Each subexpression can be viewed as the node of a graph. Such a node is either

terminal in the case of constants 0 and 1, or non-terminal. A non-terminal node has a

low-edge corresponding to the else-part and a high-edge corresponding to the then-

part. See Fig. 4. Notice, that the number of nodes has decreased from 9 in the decision

tree to 6 in the BDD. It is not hard to imagine that if each of the terminal nodes were

other big decision trees the savings would be dramatic. Since we have chosen to

consistently select variables in the same order in the recursive calls during the

construction of the INF of t , the variables occur in the same orderings on all paths

from the root of the BDD. In this situation the binary decision diagram is said to be

ordered (an OBDD). Fig. 3 shows a BDD that is also an OBDD.

Fig. 4. A BDD for () ()1 1 2 2x y x y⇔ ∧ ⇔ with ordering 1 1 2 2x y x y< < < .

Low-edges are drawn as dotted lines and high-edges as solid lines.

 A Binary Decision Diagram (BDD) is a rooted, directed acyclic graph with

• one or two terminal nodes of out-degree zero labeled with 0 or 1, and

• a set of variable nodes u of out-degree two. The two outgoing edges are given

by two function ()low u and ()high u . In pictures, these are shown as dotted

and solid lines, respectively. A variable ()var u is associated with each

variable node.

 A BDD is Ordered (OBDD) if on all paths through the graph the variables respect

a given linear order 1 2 nx x x< < <K . An (O)BDD is Reduced (R(O)BDD) if

(uniqueness) no two distinct nodes u and v have the same variable name and low-

and high- successor, i.e.,

 On development and implementation of a parallel … 39

• () ()var varu v= , () ()low u low v= , () ()high u high v= implies u v= , and

• (non-redundant tests) no variable node u has identical low- and high-

successor, i.e., () ()low u high u≠ .

 ROBBDs have some interesting properties. They provide compact
representations of Boolean expressions, and there are efficient algorithms for

performing all kinds of logical operations on ROBBDs. They are based on the crucial

fact that for any function : n
f Β → Β there is exactly one ROBDD representing it.

This means, in particular, that there is exactly one ROBDD for the constant true (and

constant false) function on nΒ : the terminal node 1 (and 0 in case of false). Hence, it

is possible to test in constant time whether an ROBBD is constantly true of false.

(Recall that for Boolean expressions this problem is NP-complete.)

 To make this claim more precise we must say what we mean for an ROBDD to

represent a function. First, it is quite easy to see how the nodes u of an ROBDD

inductively defines Boolean expressions u
t : A terminal node is a Boolean constant. A

non-terminal node marked with x is an if-then-else expression where the condition is

x and the two branches are the Boolean expressions given by the low- or high-son,

respectively:
0

0t = ; 1
1t = ; () () ()

var ,
high u low uu

t u t t= → , if u is a variable node.

 Moreover, if 1 2 nx x x< < <K is the variable ordering of the ROBDD, we

associate with each node u the function u
f that maps ()1 2, , , n

nb b b ∈ ΒK to the truth

value of 1 1 2 2[/ , / , , /]u

n nt b x b x b xK . We can now state the key lemma:

Lemma (Canonicity lemma)

 For any function : n
f Β → Β there is exactly one ROBDD u with variable ordering

1 2 nx x x< < <K such that ()1, ,u
nf f x x= K .

2 Constructing and Manipulating ROBDDs
 Due to enormous size of systems to be verified efficient algorithms and data

structures shall be developed. Let us consider main algorithms and data structures for

manipulating Binary Decision Diagrams.

2.1 Data Structures

Hash Table
 A hash table associates a value with a key. A hash function applied to the key

selects which of N linked lists the key, value pair is stored. The load factor of a hash

table is defined /n Nα = , where n is the number of keys stored in the table.

Computed table

 A memory function for the function F is a table of values ()(),x F x that the

function has already computed. If F is called with argument x again, ()F x is

40 S. M. Bogomolov, G. M. Zholtkevych

returned without any computation. We use a memory function to improve the

performance of ite . We call the memory function for ite the computed-table (cache

table). The computed-table maps three nodes F , G , H to the result node

(), ,ite F G H once this result has been computed. We implement the computed-table

using a hash table.

Uncomputed table

 The uncomputed table is a hash table used to keep track of ongoing computations.

The uncomputed table is necessary because results in an ongoing recursive BDD

computation are almost likely not immediately available. For instance, the current

thread of computation may be temporally stopped because it requires a result from

another thread. Thus, it is necessary to keep a record of having started a computation

to prevent it from being started multiple times.

 The uncomputed table provides a forward mechanism that allows threads of

computation to send the information about the completion of computation to other

threads waiting for this event.

 Functions also store their returning value in this table.

Hash-based cache
 A hash-based cache is a hash table where collision chain is not used to resolve

collisions. Instead, at insert time, any existing element at the particular array position

is discarded and replaced with the new entry. At lookup time, if the element does not

match the stored key, a cache miss occurs and no element is returned.

Unique Table
 As was already mentioned each node in the ROBDD represents a Boolean

function, and is written using a capital letter, such as F , and can be denoted by the

triple (), ,v G H , where v is the top variable of F , G is the node connected to the 1

(or then) edge of F , and H is the node connected to the 0 (or else) edge of F.

 A hash table imposes a strong canonical form on the nodes in the ROBDD, so

that each node in the ROBDD represents a unique logic function. Hence, this hash

table is called the unique-table.

 The unique-table maps a triple (), ,v G H to an ROBDD node (), ,F v G H= . Each

node in the ROBDD has an entry in the unique-table. Before a new node is added to

the ROBDD, a lookup in the unique table determines if a node for that function

already exists. If so, the existing node is used. Otherwise, the new node is added to the

ROBDD and a new unique-table entry is made. By assumption, when we create a new

node F , the nodes G and H will already obey the strong canonical form. Hence, the

function F exists in the ROBDD if, and only if, the triple (), ,v G H is already in the

unique table, thus maintaining the strong canonical form.

 The unique table allows a single multi-rooted DAG to represent all of the user’s

formulae simultaneously.

 The relationship between a unique table and a cache table is shown in Fig. 5.

 On development and implementation of a parallel … 41

Fig. 5. Unique table and cache table

Work Queue
 The work queue facilitates parallel tree traversals and is the mechanism by which

simultaneous threads of computation may be executed. It is an unordered, prioritized

queue to which any thread may add tasks.

Stack Frames

 Some mechanism is required to temporarily store a portion of the recursive

computation until it can be continued at a later time. In other words, threads

continually process their work queue and do not wait for results from other processors.

To meet these needs, a persistent data structure, the stack frame, was constructed so

that threads could obtain the required information and perform steps of the

calculations at their own convenience.

 Each stack frame keeps state information necessary to complete that step of the

computation. It points to the parent stack frame to which it can send its result.

2.2 ITE Algorithm

 The algorithm is based on Shannon’s decomposition theorem which states that

v vF v F v F= ⋅ + ⋅

Where vF and vF are F evaluated at 1v = and 0v = respectively. Let (), ,F w T E=

and assume v w≤ . Finding the cofactors of F with respect to v is trivial: vF F= (if

v w<) or T (if v w=), and vF F= (if v w<) or E (if v w=).

 The following recursive formulation is the key to computing (), ,ite F G H for

functions F , G , H represented in ROBDD form. Let (), ,Z ite F G H= and let v be

the top variable of F , G , H . Then,

() ()v v v v
Z v Z v Z v F G F H v F G F H= ⋅ + ⋅ = ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ =

42 S. M. Bogomolov, G. M. Zholtkevych

() () () ()(), , , , , ,v v v v v v v v v v v v v vv F G F H v F G F H ite v ite F G H ite F G H= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ = =

() ()(), , , , , ,v v v v v vv ite F G H ite F G H=

The terminal cases for this recursion are: () () ()1, , 0, , ,1,0ite F G ite G H ite F F= = = .

 With the assumption of constant lookup and insert in the tables, all operations in

ite take constant time. Observe that ite can be called at most once for each

combination of nodes in F , G , H , i.e., ()O F G H⋅ ⋅ times. So the time

complexity is ()O F G H⋅ ⋅ [3]. In practice, the typical performance is closer to the

size of the resulting function.

Finally we present the ite algorithm:

Fill terminal cases in the computed table

(), ,ite F G H

{

while (work queue for this thread is not empty)

 {

 Extract from queue F, G, H

 Find a stack frame S corresponding to F, G, H

 If (terminal case)

 Write the result to the parent stack frame;

 else if (computed-table has entry {F,G,H})

 Write the result to the parent stack frame

 else

 {

 Let v be the top variable of {F,G,H}

 Create stack frames H for (), ,v v vF G H and L for

 (), ,v v vF G H . Point H and L to their parent stack

 frame S

 if (S has computed results for low- and high-nodes)

 {

 T = high-node result from S

 E = low-node result from S

 if (T equals E)

 Write T as the result to the parent stack

 frame;

 R = find_or_add_unique_table (v,T,E);

 Insert_computed_table ({F,G,H}, R);

 Delete (), ,F G H from the uncomputed table

 Write R as the result to the parent stack frame

 and send notification to other pending stack

 frames (in other words, add all the pending stack

 frames to the work queue)

 }

 else

 On development and implementation of a parallel … 43

 {

 if (S does not have a computed result for

 the high-node)

 {

 if (uncomputed table does not have an entry

 (), ,v v vF G H)

 {

 Choose thread with the shortest work

 queue. Add (), ,v v vF G H to this work queue

 }

 else

 {

 Add (), ,F G H to the pending list of

 (), ,v v vF G H

 }

 }

 if (S does not have a computed result for

 the low-node)

 {

 if (uncomputed table does not have an entry

 (), ,v v vF G H)

 {

 Choose thread with the shortest work

 queue. Add (), ,v v vF G H to this work queue

 }

 else

 {

 Add (), ,F G H to the pending list of

 (), ,v v vF G H

 }

 }

 }

 }

 }

}

2.3 Garbage Collection Process

 Computers have limited memory and they run out of it quickly. To avoid this

problem, nodes that are unnecessary should be removed. We named the procedure

which performs this function garbage collection (GC).

 Even if memory is not completely full, GC is very useful. A smaller number of

nodes means faster operations on BDDs. However, some extra time is spent on GC.

For an effective GC additional information about each node is needed. Unfortunately,

this increases the usage of memory. Therefore, a more frequent GC, which is faster, is

preferable.

44 S. M. Bogomolov, G. M. Zholtkevych

 GC deletes all nodes which are not part of any formula. If the user wants, a

complete formula can be removed, too. Internal nodes of other formulae must not be

deleted by this operation.

 Note that all records in the computed-table which contain bad nodes must be

removed before deleting bad nodes from the unique-table.

 Each node has a count of the number of other nodes and the number of user

formulae that refer to it. A node with a reference count of 0 is called dead node.

 When a formula is deleted, the reference count of the corresponding top node is

decremented by 1. If the new reference count is 0, then the reference counts of

successor nodes are recursively decremented. If any of them becomes a dead node,

recursion continues there.

 It can happen that an existing node which is already dead should be included into

the formula. In this case the reference counts of this node and of all dead descendants

are incremented by 1. In recursion it should be considered that all successors of a non-

dead node are non-dead nodes.

 The procedure for GC removes all dead nodes.

4 Experimental Results

 Many problems in Electronic CAD (especially in the synthesis and test area)

require the computation of the maximum clique in a graph. The BDD approach to this

problem is based on using characteristic functions to represent sets of subsets.

 Given a set of n elements Q , and being { }0,1B = , any subset S Q⊆ can be

easily mapped to a point in nΒ : each element iq Q∈ is represented by a Boolean

variable ix getting values in Β ; each combination of values for the variables 1, , nx xK

identifies the subset of Q composed by just the elements corresponding to the

variables set to 1. Any set T of subsets Q can now be represented by a characteristic

function : n
f Β → Β which returns the value 1 iff its inputs 1, , nx xK represent an

element of T .

 A Boolean expression can be defined for the characteristic function CCCf of the

set of all the Completely Connected Components (CCC) of a graph V . Denoting by n

the number of vertices in V , and by 1, , nx xK the Boolean variables associated with

the vertices, the function : n

CCCf Β → Β is defined as follows:

() ()1, ,CCC n i jf x x x x= ⋅∏K ,

where Π denotes the logical and operator extended to all the missing edges ije

between any two nodes iv , jv in the graph. The function returns the value 1 iff the

input is a CCC.

 Once CCCf has been computed, determining the maximum clique in the graph

means finding the maximum-cost satisfying assignment for CCCf
, where the cost of

each assignment is the number of variables set to 1 in it. Denoting by s the number of

 On development and implementation of a parallel … 45

nodes of the BDD representing CCCf , this operation can be done with complexity

()O s . As s is always much smaller than the worst case 2
n , the total cost of finding

the MC with this method is the one for building the function CCCf .

Fig. 6. A graph example

As an example, let us consider the graph of Fig. 6. The function CCCf is:

1 2 1 3 1 1 3 1 2 2 3CCCf x x x x x x x x x x x= ⋅ = + ⋅ + ⋅ + + ⋅

The maximum-cost satisfying assignment for such a function is 2 3 4x x x⋅ ⋅ ; the MC in

the graph is thus composed by the vertices 2v , 3v and 4v .

 Monoprocessor system had Intel Pentium 4 2.4 GHz processor; 2-core system

had Intel Core 2 Duo E6600 2.4 GHz processor and 4-core system had Intel Core 2

Quad Q6600 2.4 GHz processor. All the systems were equipped with 2 GB RAM. The

experimental results are shown in Fig. 7 and Fig. 8.

Graph size Monoprocessor

system (s)

2-core system (s) 4-core system (s)

10 2 1 <1

50 58 37 25

80 5401 3270 2026

100 7430 4600 2801

150 8501 5304 3257

200 9275 5819 3516

250 12285 8537 5212

400 25341 15509 9410
Fig. 7. Experimental results

46 S. M. Bogomolov, G. M. Zholtkevych

0

5000

10000

15000

20000

25000

30000

T
im

e
(s

)

Graph size (nodes)

Monoprocessor system

2-core system

4-core system

Fig. 8. Graphical representation of the experimental results

Summary

 Efficient solutions on as to how to represent Boolean functions with ROBDD are

shown. It is shown in detail how to parallelize the main algorithms for manipulating

ROBDDs. Our representation uses If-Then-Else operator, computed and uncomputed

tables, unique table and work queue. Data structures and algorithms are described in

detail. The used algorithms are based on Shannon’s decomposition theorem.

 A practical result of this research is a ROBDD programming package written in

C. The package can be used as a foundation for various tasks: proof of correctness of

combinatorial circuits, system verification, protocol validation, etc.

 Summing up, this BDD package is an efficient and portable BDD package that

demonstrates speed-up over optimized sequential code. It presents an excellent

platform for further research.

BIBLIOGRAPHY

1. S. Kimura, Residue BDD and Its Application to the Verification of Arithmetic

Circuits, Proc. 32th ACM/IEEE Design Automation Conference, pp. 542-

545, 1995

2. S.-I. Minato, Zero-Suppressed BDDs for Set Manipulation in Combinatorial

Problems, Proc. 30th ACM/IEEE Design Automation Conference, pp. 272-

277, 1993

3. K. S. Brace, R. L. Rudell, R. E. Bryant, Efficient Implementation of a BDD

Package,
th

27 ACM/IEEE Design Automation Conference, 1990, pp. 40-45

4. S. Minato, N. Ishuira and S.Yajima, Shared Binary Decision Diagram with

Attributed Edges for Efficient Boolean Function Manipulation, In

 On development and implementation of a parallel … 47

Proceedings of 27th ACM/IEEE Design Automation Conference, pp. 52-57,

June 1990

5. Y. Parasuram, E. Stabler and Shiu-Kai Chin, Parallel Implementation of BDD

Algorithms Using a Distributed Shared Memory, In Proceedings of the

Twenty-Seventh Hawaii International Conference on System Sciences Vol I:

Architecture, pp. 16-25, January 1994

6. H. Ochi, S. Yajima, N. Ishiura, A Vector Algorithm for Manipulating Boolean

Functions Based on Shared Binary Decision Diagrams, Supercomputer, Vol.

8, No. 6, November 1991

7. G. Cabodi, S. Gai, M. Rebaudengo, M. Sonza Reorda, A Data-Parallel

Approach to Boolean Function Manipulation using BDDs, IEEE/Euromicro

Conf. on Massively Parallel Comp. System, 1994, pp. 163-175

8. S. Kimura, T. Igaki, H. Haneda, Parallel Binary Decision Diagram

Manipulation, IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Science, Vol. E75-A, No. 10, pp. 1255-62,

October 1992

9. P. Arunnacham, C. Chase, D. Moundanos, Distributed Binary Decision

Diagrams fro Verification of Large Circuits, IEEE Int. Conf. on Comp.

Design, 1996, pp. 365-370

10. G. Cabodi, S. Gai, M. Rebaudengo, M. Sonza Reorda, A Data-Parallel

Approach to Boolean Function Manipulation using BDDs, IEEE/Euromicro

Conf. on Massively Parallel Comp. System, 1994, pp. 163-175

11. S. Kimura, E.M. Clarke, A Parallel Algorithm for Constructing Binary

Decision Diagrams, IEEE Int. Conf. on Comp. Design, 1990, pp. 220-223

12. S. Kimura, Residue BDD and Its Application to the Verification of

Arithmetic Circuits, Proc. 32th ACM/IEEE Design Automation Conference,

pp. 542-545, 1995

13. S.-I. Minato, Zero-Suppressed BDDs for Set Manipulation in Combinatorial

Problems, Proc. 30th ACM/IEEE Design Automation Conference, pp. 272-

277, 1993

14. R. Rudell, Dynamic Variable Ordering for Ordered Binary Decision

Diagrams, In Proceedings of the IEEE International Conference on

Computer-Aided Design, pp. 42-47, Santa Clara, CA, November 1993

15. Tsutomu Sasao, Munehiro Matsuura, Methods and representations for logic

synthesis: BDD representation for incompletely specified multiple-output

logic functions and its applications to functional decomposition, Proc. 42nd

annual conference on Design automation DAC '05, pp. 373 – 378, 2005

16. Lei Cheng, Deming Chen, Martin D. F. Wong, FPGA tools and

methodologies: DDBDD: delay-driven BDD synthesis for FPGAs, Proc. 44th

annual conference on Design automation DAC '07, pp. 910–915, 2007

17. S. Minato, S. Ishihara, Streaming BDD manipulation for large-scale

combinatorial problems, Proceedings of the conference on Design,

automation and test in Europe DATE '01, pp. 702–707, 2001

18. Ziv Nevo, Monica Farkash, Distributed dynamic BDD reordering, Proc. 43rd

annual conference on Design automation, pp. 223–228, 2006

19. Riccardo Forth, Paul Molitor, An efficient heuristic for state encoding

minimizing the BDD representations of the transistion relations of finite state

48 S. M. Bogomolov, G. M. Zholtkevych

machines, Proceedings of the 2000 conference on Asia South Pacific design

automation, pp. 61–66, 2000

20. Rüdiger Ebendt, Rolf Drechsler, Lower bounds for dynamic BDD reordering,

Proceedings of the 2005 conference on Asia South Pacific design automation,

pp. 579-582, 2005

21. Ralf Wimmer, Marc Herbstritt, Bernd Becker, Optimization techniques for

BDD-based bisimulation computation, Proc. 17th great lakes symposium on

Great lakes symposium on VLSI, pp. 405-410, 2007

